Смекни!
smekni.com

Магнетизм 2 (стр. 2 из 3)

(BH)max(МГсЭ) - магнитная энергия, полная плотность энергии, максимальное энергетическое произведение. Определяет, насколько сильным является магнит. Чем больше данная величина, тем более мощным является магнит.

Tc of Br(% на ºС) - температурный коэффициент остаточной магнитной индукции. Определяет, насколько сильно магнитная индукция изменяется от температуры. Величина -0.20 означает, что если температура увеличится на 100 градусов Цельсия, магнитная индукция уменьшится на 20%.

Tmax(ºС) - максимальная рабочая температура. Определяет предел температуры, при которой магнит временно теряет часть своих магнитных свойств. При снижении температуры магнит полностью восстанавливает все магнитные свойства.

Tcur (ºС) - температура Кюри. Определяет предел температуры, при которой магнит полностью размагничивается. При снижении температуры магнит не восстанавливает магнитные свойства. Если магнит нагревается в пределах от Tmax до Tcur, при снижении температуры магнитные свойства восстанавливаются частично.

Виды магнитов.

Постоянные магниты – наиболее привычный нам вид магнитов. Они постоянные в том смысле, что будучи однажды намагничены, эти магниты сохраняют некоторый уровень остаточной намагниченности. Как мы увидим в дальнейшем, разные виды постоянных магнитов имеют различные характеристики или свойства, относящиеся к тому, как легко они размагничиваются, насколько они сильные, как их сила меняется с температурой и т. д.

Материалы, используемые для производства постоянных магнитов.

Материал BrHc (BH)maxTcofBrTmax Tcur

(Гс) (Э) (МГсЭ) (% на ºС) (ºС) (ºС)

Nd-Fe-B 12 800 12 300 40 -0.12 150 310

SmCo 10 500 9 200 26 -0.04 300 750

Альнико 12 500 640 5.5 -0.02 540 860

Керамические 3 900 3 200 3.5 -0.20 300 460

Временные магниты – это магниты, которые действуют как постоянные магниты только тогда, когда находятся в сильном магнитном поле, и теряют свой магнетизм, когда магнитное поле исчезает. В качестве примера можно привести скрепки и гвозди, а также другие изделия из "мягкого" железа.

Электромагниты – это туго намотанные на каркас витки провода, обычно с железным сердечником, который действует как постоянный магнит только тогда, когда по проводу течет ток. Сила и полярность магнитного поля, создаваемого электромагнитом, обусловлены изменением величины и направления электрического тока, текущего по проводу.

Магнитопласты – это постоянные магниты, состоящие из смеси магнитного порошка (около 95%) и полимерного связующего наполнителя (около 5% по массе). Приведенное процентное соотношение может меняться в небольших пределах для получения магнитов с заданными магнитными свойствами. В качестве магнитной основы чаще всего используют сплав Nd-Fe-B (возможно применение ферритов, но магнитные свойства получаемых изделий очень слабые), в качестве полимерного наполнителя – термопласты (например, полиэтилен) или эпоксидную смолу. Основные черты магнитопластов: высокая технологичность производства (высокая воспроизводимость и стабильность магнитных свойств); отсутствие хрупкости (как у спеченных магнитов), хорошие возможности обработки; достаточно высокие магнитные характеристики; более низкий вес (по сравнению со спеченными магнитами); возможность изготовления любых вообразимых форм. Магнитопласты изготавливаются с помощью технологии литья под давлением или прессованием. После принятия необходимой формы магнитопласты намагничиваются и покрываются антикоррозионными материалами.

Современные магнитные материалы и их свойства.

Ферриты (или керамика, керамические магниты, ceramic) – самые популярные постоянные магниты, существующие в настоящее время. Они производятся из комбинации феррита бария или стронция и оксида железа и демонстрируют высокую коэрцитивную силу, что говорит о хорошей сопротивляемости к размагничиванию. Ферриты обладают наименьшей стоимостью, что обеспечивает им успех в тех магнитных приложениях, где не требуется выдающихся результатов по величине магнитного поля. Ферриты имеют очень хорошую коррозионную стойкость и устойчиво работают в диапазоне температур от -40 до +250 градусов Цельсия. Диапазон максимальной энергии – от 1,1 до 4,5 МГЭ.

Альнико(Alnico, AlNiCo, алюминий-никель-кобальт) демонстрируют высокое значение остаточной магнитной индукции, отлично работают при повышенных температурах, имеют достаточно высокое значение максимальной энергии, однако основным их недостатком является низкое значение коэрцитивной силы, что означает, что их относительно легко размагнитить. Они производятся из сплавов алюминия, никеля и кобальта с добавлением различных химических элементов и могут быть как литые, так и спеченные. Литые магниты альнико могут быть сделаны столь замысловатых форм, которые не могут быть осуществлены с другими материалами. Спеченные магниты альнико обычно ограничены небольшими размерами. Магниты альнико самые термостабильные среди всех видов магнитов и могут быть использованы без значительной потери свойств до 500-600 градусов Цельсия. Диапазон максимальной энергии – от 1,4 до 7,5 МГЭ.

Самарий-кобальт (Samarium, SmCo) - -как представители второго поколения редкоземельных магнитов, эти магниты не только имеют достаточно высокое значение максимальной энергии и подходящую величину коэрцитивной силы, но также демонстрируют лучшие температурные характеристики в семействе редкоземельных магнитных материалов. Магниты самарий-кобальт могут работать при температуре до 350 градусов Цельсия, имеют лучшую температурную стабильность и лучшую коррозионную стойкость по сравнению с остальными редкоземельными материалами. Диапазон максимальной энергии – от 18 до 32 МГЭ.

Неодим-железо-бор (Neodymium, Nd-Fe-B, NdFeB, неодимовые магниты) - третье поколение редкоземельных магнитов, имеют наиболее высокие значения остаточной магнитной индукции, коэрцитивной силы, максимальной энергии и соотношения производительность/цена. Их легко производить различных форм и размеров, поэтому магниты неодим-железо-бор широко используются в авиации, электронике, метрологии, медицинских инструментах и т. п. Они особенно подходят для разработки высокопроизводительных, компактных и легких устройств. Диапазон максимальной энергии – от 1 до 48 МГЭ.

В заключение нужно отметить, что представленные диаграммы характеризуют наиболее распространенные характеристики семейств магнитных материалов. Для конкретных магнитов различных производителей конкретные характеристики могут отличаться от приведенных.

Магниты и современные защитные покрытия.

Для предотвращения коррозии и защиты от других неблагоприятных условий внешней среды магниты (а особенно магниты Nd-Fe-B), в случае необходимости, покрываются различными защитными материалами. Это покрытия никель-никель и никель-медь-никель (10-20 микрон), цинк (8-20 микрон), никель-медь-золото (10-20 микрон), дополненные, в ряде случаев, внешним слоем эпоксидной смолы, специального стойкого полимерного материала или обработанные фосфатами. Для особо агрессивного окружения рекомендуется использовать комбинацию различных видов защитных покрытий.

Способы намагничивания магнитов.

Эффект Холла.

Явление, при котором измеряемое напряжение меняет знак на обратный при изменении направления магнитного поля на обратное, названо эффектом Холла (по имени физика Эдвина Герберта Холла, открывшего этот эффект в 1879 году в тонких пластинках золота).

Можно использовать датчики на основе эффекта Холла для измерения величины неизвестных магнитных полей.

Датчики Холла выпускаются многими компаниями в мире, например, компанией Honeywell. В России наиболее просто можно приобрести датчик ДХК-0.5А. Датчик Холла ДХК-0.5А предназначен для измерения величины магнитной индукции на основе преобразования магнитной индукции в выходное напряжение. Датчик выполнен на основе планарной топологической структуры, сформированной на поверхности кремниевого кристалла.

Если через полупроводник в одном направлении пропускать постоянный ток I плотностью j, а в другом направлении воздействовать магнитным полем B, то в третьем направлении можно измерить напряжение V, меняющееся пропорционально силе магнитного поля: V = R · B · b · j, где R – постоянная Холла, b – расстояние между гранями, на которых возникает измеряемое напряжение.

Применение датчиков Холла.

Линейные датчики Холла: датчики тока; приводы переменной частоты вращения; схемы управления и защиты электродвигателей; датчики положения; датчики расхода; бесколлекторные двигатели постоянного тока; бесконтактные потенциометры; датчики угла поворота; детекторы ферромагнитных тел; датчики вибрации; тахометры.

Логические датчики Холла: датчики частоты вращения; устройства синхронизации; датчики систем зажигания автомобилей; датчики положения (обнаруживают перемещение менее 0,5 мм); счётчики импульсов (принтеры, электроприводы); датчики положения клапанов; блокировка дверей; бесколлекторные двигатели постоянного тока; измерители расхода; бесконтактные реле; детекторы приближения; считыватели магнитных карточек или ключей; датчики бумаги (в принтерах).