ОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ИМ. Ф.М. ДОСТОЕВСКОГО
КАФЕДРА ХИМИЧЕСКОЙ ТЕХНОЛОГИИ
Реферат по охране природы на тему «Электрофильтры»
Выполнил: студент группы хх‑601(эх)
Левин Д.К.
Проверил: профессор
Адеева Л.Н.
кафедра НХ
Омск – 2010
Введение
Промышленное производство и другие виды хозяйственной деятельности людей сопровождаются выделением в воздух помещений и в атмосферный воздух различных веществ, загрязняющих воздушную среду. В воздух поступают аэрозольные частицы (пыль, дым, туман), газы, пары, а также микроорганизмы и радиоактивные вещества.
На современном этапе для большинства промышленных предприятий очистка вентиляционных выбросов от вредных веществ является одним из основных мероприятий по защите воздушного бассейна. Благодаря очистке выбросов перед их поступлением в атмосферу предотвращается загрязнение атмосферного воздуха.
Очистка воздуха имеет важнейшее санитарно-гигиеническое, экологическое и экономическое значение.
Этап пылеочистки занимает промежуточное место в комплексе «охрана труда — охрана окружающей среды». В принципе пылеулавливание при правильной организации решает проблему обеспечения нормативов предельно допустимых концентраций (ПДК) в воздухе рабочей зоны. Однако все вредности через систему пылеулавливания при отсутствии системы пылеочистки выбрасываются в атмосферу, загрязняя ее. Поэтому этап пылеочистки следует считать неотъемлемой частью системы борьбы с пылью промышленного предприятия.
Очистка газов – выделение из газовой смеси при выбросе её в атмосферу различных примесей с целью сохранения нормальных санитарных условий в прилегающих к промышленным объектам районах, подготовки газов к использованию в качестве химического сырья или топлива, а самих примесей – как ценных продуктов. Газоочистку принято подразделять на очистку от взвешенных частиц – пыли, тумана, и от парообразных и газообразных примесей, нежелательных при использовании газов или при выбросе их в атмосферу.
Промышленные методы очистки газов можно свести к трём группам:
1) с помощью твёрдых поглотителей или катализаторов – «сухие методы» очистки;
2) с помощью жидких поглотителей (абсорбентов) – жидкостная очистка;
3) очистка без применения поглотителей и катализаторов.
К первой группе относятся методы, основанные на адсорбции, химического взаимодействии с твёрдыми поглотителями и на каталитическом превращении примесей в безвредные или легко удаляемые соединения. Сухие методы очистки обычно проводят с неподвижным слоем сорбента, поглотителя или катализатора, который периодически должен подвергаться регенерации или замене. В последнее время такие процессы осуществляются также в «кипящем» или движущемся слое, что позволяет непрерывно обновлять очищающие материалы. Жидкостные способы основаны на абсорбции извлекаемого компонента жидким сорбентом (растворителем). Третья группа методов очистки основана на конденсации примесей и на диффузионных процессах (термодиффузия, разделение через пористую перегородку).
Содержащиеся в промышленных газах частицы чрезвычайно разнообразны по своему составу, агрегатному состоянию, а также дисперсности. Очистка газов от взвешенных частиц (аэрозолей) достигается механическими и электрическими средствами. Механическую очистку газов производят: воздействием центробежной силы, фильтрацией сквозь пористые материалы, промывкой водой или же другой жидкостью; иногда для освобождения от крупных частиц используют их силу тяжести. Механическую очистку газов обычно проводят методами сухой газоочистки (аппарат циклон), фильтрации и мокрой газоочистки. Электрическая очистка газов применяется для улавливания высокодисперсных частиц пыли или туманов и обеспечивает, при известных условиях, высокий коэффициент очистки.
В своем докладе я опишу принципы электрической очистки газов, действия электрофильтров, их виды, возможности комбинированного использования для очистки газов, а так же достоинства и недостатки их применения.
1. Принцип действия электрофильтров
В электрофильтре очистка газов от твердых и жидких частиц происходит под действием электрических сил. Частицам сообщается электрический заряд, и они под действием электрического поля осаждаются из газового потока.
Общий вид электрофильтра приведен на рис. 1.
Рис. 1. Электрофильтр: 1 – осадительный электрод; 2 - коронирующий электрод; 3 – рама; 4 – высоковольтный изолятор; 5 – встряхивающее устройство; 6 – верхняя камера; 7 – сборник пыли.
Процесс обеспыливания в электрофильтре состоит из следующих стадий: пылевые частицы, проходя с потоком газа электрическое поле, получают заряд; заряженные частицы перемещаются к электродам с противоположным знаком; осаждаются на этих электродах; удаляется пыль, осевшая на электродах.
Зарядка частиц - первый основной шаг процесса электростатического осаждения. Большинство частиц, с которыми приходится иметь дело при промышленной газоочистке, сами по себе несут некоторый заряд, приобретенный в процессе их образования, однако эти заряды слишком малы, чтобы обеспечить эффективное осаждение. На практике зарядка частиц достигается пропусканием частиц через корону постоянного тока между электродами электрофильтра. Можно использовать и положительную и отрицательную корону, но для промышленной газоочистки предпочтительнее отрицательная корона из-за большей стабильности и возможности применения больших рабочих значений напряжения и тока, но при очистке воздуха используют только положительную корону, так как она дает меньше озона.
Основными элементами электрофильтра являются коронирующий и осадительный электроды. Первый электрод в простейшем виде представляет собой проволоку, натянутую в трубке или между пластинами, второй - представляет собой поверхность трубки или пластины, окружающей коронирующий электрод (рис. 2).
На коронирующие электроды подается постоянный ток высокого напряжения 30…60 кВ. Коронирующий электрод обычно имеет отрицательную полярность, осадительный электрод заземлен. Это объясняется тем, что корона при такой полярности более устойчива, подвижность отрицательных ионов выше, чем положительных. Последнее обстоятельство связано с ускорением зарядки пылевых частиц.
После распределительных устройств обрабатываемые газы попадают в проходы, образованные коронирующими и осадительными электродами, называемые межэлектродными промежутками. Сходящие с поверхности коронируюших электродов электроны разгоняются в электрическом поле высокой напряженности и приобретают энергию, достаточную для ионизации молекул газа. Сталкивающиеся с электронами молекулы газов ионизируются и начинают ускоренно двигаться в направлении электродов противоположного заряда, при соударении с которыми выбивают новые порции электронов. В результате между электродами появляется электрический ток, а при некоторой величине напряжения образуется коронный разряд, интенсифицирующий процесс ионизации газов. Взвешенные частицы, перемещаясь в зоне ионизации и сорбируя на своей поверхности ионы, приобретают в конечном итоге положительный или отрицательный заряд и начинают под влиянием электрических сил двигаться к электроду противоположного знака. Частицы сильно заряжаются на первых 100…200 мм пути и смещаются к заземленным осадительным электродам под воздействием интенсивного поля короны. Процесс в целом протекает очень быстро, на полное осаждение частиц требуется всего несколько секунд. По мере накопления частиц на электродах их стряхивают или смывают.
Рис. 2. Конструктивная схема электродов: а - электрофильтр с трубчатыми электродами; б - электрофильтр с пластинчатыми электродами; 1 - коронирующие электроды; 2 - осадительные электроды.
Коронный разряд характерен для неоднородных электрических полей. Для их создания в электрофильтрах применяют системы электродов типа точка (острие) - плоскость, линия (острая кромка, тонкая проволока) - плоскость или цилиндр. В поле короны электрофильтра реализуются два различных механизма зарядки частиц. Наиболее важна зарядка ионами, которые движутся к частицам под действием внешнего электрического поля. Вторичный процесс зарядки обусловлен диффузией ионов, скорость которой зависит от энергии теплового движения ионов, но не от электрического поля. Зарядка в поле преобладает для частиц диаметром более 0,5 мкм, а диффузионная — для частиц мельче 0,2 мкм; в промежуточном диапазоне (0,2…0,5 мкм) важны оба механизма.
2. Конструкции и виды электрофильтров
Аппараты для очистки газов этим методом называют электрофильтрами. Основными элементами электрофильтров являются: газоплотный корпус с размещенными в нем коронирующими электродами, к которым подводится выпрямленный ток высокого напряжения, и осадительными заземленными электродами, изоляторы электродов, устройства для равномерного распределения потока по сечению электрофильтра, бункера для сбора уловленных частиц, системы регенерации электродов и электропитания.
Конструктивно электрофильтры могут быть с корпусом прямоугольной или цилиндрической формы. Внутри корпусов смонтированы осадительные и коронирующие электроды, а также механизмы встряхивания электродов, изоляторные узлы, газораспределительные устройства.
Часть электрофильтра, в которой размещены электроды, называют активной зоной (реже - активным объемом). В зависимости от числа активных зон известны электрофильтры однозонные и двухзонные. В однозонных электрофильтрах коронирующие и осадительные электроды в пространственном отношении, конструктивно не разделены, В двухзонных электрофильтрах имеется четкое разделение. Для санитарной очистки запыленных выбросов используют однозонные конструкции с размещением коронирующих и осадительных электродов в одном рабочем объеме. Двухзонные электрофильтры с раздельными зонами для ионизации и осаждения взвешенных частиц применяют в основном при очистке приточного воздуха. Связано это с тем, что в ионизационной зоне происходит выделение озона, поступление которого не допускается в воздух, подаваемый в помещения.