Смекни!
smekni.com

Ферромагнитный материал на основе ZnSiAs2 (стр. 1 из 3)

ФЕРРОМАГНИТНЫЙ МАТЕРИАЛ НА ОСНОВЕ ZnSiAs2

Перспективным направлением твердотельной электроники становится спинтроника, где, наряду с зарядом, спин электрона рассматривается как активный элемент для хранения и передачи информации. Ключевая проблема спинтроники – поиск и синтез новых ферромагнетиков, которые совместимы с «кремниевой технологией», имеют высокую температуру Кюри и способны инжектировать высокоподвижные поляризованные по спину носители тока [1]. В работах [2-4] путём введения в CdGeAs2, CdGeP2, ZnGeAs2 и ZnSnAs2 марганца удалось создать ферромагнетики с температурой Кюри выше комнатной. Для выбора оптимальных условий синтеза ZnSiAs2, на основе анализа бинарных фазовых диаграмм Zn-As, Si-As, Si-Zn [5], проведена триангуляция тройной системы Zn-Si-As. Наиболее вероятные квазибинарные разрезы – Si-ZnAs2, Zn-SiAs2, в которых образуется тройное конгруэнтно плавящееся соединение ZnSiAs2 с Тпл=10960С [6].

Исходя из анализа тройной системы Zn-Si-As, синтез ZnSiAs2 с Mn проводили по разрезу ZnAs2–Si, непосредственным сплавлением порошков Si и ZnAs2 с общим содержанием примесей ~10‑4масс.% с добавлением в шихту высокочистого порошка марганца при температуре на 10-150 выше Тпл ZnSiAs2.

Гетероструктуры Si/ZnSiAs2{Mn}, получали термической обработкой предварительно напылённых плёнок ZnAs2 и Mn определённой толщины на монокристаллические подложки кремния. Термический отжиг проводили при температурах 900-10000 С в парах цинка и мышьяка. Отношение толщин плёнок ZnAs2 к Mn составляло 10:1. Общая толщина гетероструктур 3-6 мкм. Образование ZnSiAs2 проходило по реакции ZnAs2+Si=ZnSiAs2. После отжига граница раздела между кремнием и диарсенидом цинка-кремния в гетероструктуре была резкой из-за малой растворимости кремния в ZnSiAs2.

Идентификацию образцов проводили с помощью РФА, рентгенофлуоресцентного микроанализа и сканирующего электронного микроскопа. Согласно РФА образцы состояли только из фазы ZnSiAs2 с параметрами а = 5,6084; c = 10,8816Å, что хорошо согласовывается с данными JCPDS. Из рентгенофлуоресцентного анализа установлено, что содержание Zn, Si и As в образцах соответствовало 28:12:60 масс.% т.е. 1:1:1,91, что было близко к стехиометрическому составу ZnSiAs2. Содержание марганца было около 1 масс.%. На некоторых образцах наблюдались микронеоднородности, их примерный состав был 48-52, 27-28, 18-26 масс.% As, Zn и Si, что, по-видимому, соответствовало тройной эвтектике ZnSiAs2-Si-SiAs. Из исследований электрических и магнитных свойств установлено, что объемные образцы высокоомные, обладают p-типом проводимости и являются ферромагнетиками с температурой Кюри выше комнатной.

Изучение гетероструктуры Si/ZnSiAs2{Mn} проводили с помощью оптического микроскопа Epiquant и сканирующего электронного микроскопа. Фотографии структур до и после термической обработки представлены на рис.1 (а, б).

а б

Рис. 1. Фотографии гетероструктуры Si/ZnSiAs2{Mn} до (а) и после (б) термической обработки.

По данным рентгенофлуоресцентного анализа поверхность гетероструктуры примерно на 1/3 отвечала составу ZnSiAs2, наблюдались и микровключения тройной эвтектики ZnSiAs2-Si-SiAs и ZnAs2. Лучшие результаты получены, при напылении марганца на плёнку ZnAs2. Неоднородности удаляли путем проведения прецизионного травления поверхности гетероструктуры.

С помощью сканирующего электронного микроскопа установлено распределение элементов в центре гетероструктуры, соотношение Zn:Si:As было близко к 1:1:2, содержание марганца соответствовало ~ 1масс.% (рис. 2).

Рис. 2. Распределение элементов (Zn, Si, As, Mn) в центре гетероструктуры Si/ZnSiAs2{Mn}.

Магнитные свойства гетероструктуры Si/ZnSiAs2{Mn} исследовали с помощью СКВИД магнетометра в интервале температур от 4,2 до 300 К и горизонтальных торсионных весов с электромагнитной компенсацией в интервале температур от 300 до 650 К (рис. 3). Температурная зависимость электросопротивления определялась 4-х зондовым методом (рис. 4).

Из анализа температурной зависимости намагниченности гетероструктуры Si/ZnSiAs2{Mn} при напряжённости магнитного поля 6кЭ в интервале температур от 4,2 до 650 К установлено, что переход из ферромагнитного состояния в парамагнитное состояние происходит при температурах значительно выше комнатных. Температурная зависимость электросопротивления гетероструктуры характерна для вырожденного полупроводника.

Рис. 3. Намагниченность гетероструктуры Si/ZnSiAs2{Mn}. Рис. 4. Температурная зависимость электросопротивления гетероструктуры Si/ZnSiAs2{Mn}.

Работа выполнялась при финансовой поддержке Российского фонда фундаментальных исследований 05-03-33068 и программы №8.5 по ОХМН РАН.

В антиферромагнитных (АФ) кристаллах эффект магнитного двулучепреломления (ДП) света определяется в основном теми магнитными вкладами в тензор диэлектрической проницаемости εαβ, которые квадратичны по компонентам вектора АФ L (слагаемые типа (LiLj)) (см.ссылки в [1-3]). В то же время, в присутствии магнитного поля В, как показано в тех же работах, значительный вклад в эффекты ДП могут внести также магнитные вклады в компоненты тензора εαβ вида (LiBj). В исследуемом легкоплоскостном АФ α-Fe2O3 (L С3), при перпендикулярном падении линейно-поляризованного света на образец вдоль тригональной оси С3 существенную роль играют лишь те вклады, которые связаны с компонентами магнитного поля вдоль этой оси С3Z (слагаемые типа (LiBz)) [1]. В этом случае распространяющиеся в образце нормальные оптические моды являются эллиптически поляризованными. Показатели преломления этих мод нелинейным образом зависят от компонент тензора диэлектрической проницаемости εxy ∞ Вz (в системе осей координатXС2,Y в плоскости базиса). Это должно привести к нелинейной зависимости от магнитного поля также и эффектов ДП [1,3]. Несмотря на подробное изучение явления магнитного ДП в АФ, особенно в гематите (см.ссылки в [1-3]), влияние на эффекты ДП вкладов, определяемых членами вида (LiBz), изучалось не столь тщательно. В этой работе изложены результаты экспериментального исследования одного из аспектов данного вопроса, связанного, как будет показано ниже, с нарушением однородности магнитного поля в образце, приложенного в базисной плоскости (B^С3), вдоль оси второго порядка С2.

Изучалось прохождение линейно поляризованного на входе света (

), перпендикулярно падающего на образец вдоль оси С3 (kС3, k – волновой вектор света) в зависимости от величины В и угла между направлением магнитного поля и направлением поляризации входящего света (f). Длина образцов вдоль оси С3 составляла 0,057 и 0,62 cm. Эксперименты проводились с двумя значениями зазора электромагнита (13 и 50 mm). Магнитное поле контролировалось при помощи ЯМР-измерителя магнитной индукции. В первом случае (зазор 13mm.) поле было практически однородным во всем объеме образца. При этом z-компонента поля (Bz) вдоль оси С3 оказалась очень малой и можно было полагать Bz » 0. При зазоре 50mm. магнитное поле имело неоднородность с градиентом до 3-4 mT/cm. Регистрировались зависимости угла поворота q плоскости поляризации света на выходе образца от угла f (для эллиптической поляризации выходящего света разность (f - q) определялась углом между большой полуосью эллипса и направлением В). Измерения проводились при комнатной температуре. На Рис.1 приведены зависимости угла поворота q плоскости поляризации света на выходе из образца от угла f для более высокой (пуст. треуг.) и худшей (темн.треуг.) однородности магнитного поля В. Как видно из Рис.1, в однородном магнитном поле зависимость в интервалах 0 - 40o и 50о - 90о является линейной, неоднородность поля приводит к заметному отклонению от линейности. В экспериментах поляризация выходящего света менялась с изменением угла f: она линейная при f=0 и 90°, круговая при f = 45° и эллиптическая при промежуточных значениях. Это подтверждалось характером изменения интенсивности проходящего света от минимума при почти полном поглощении линейно поляризованного света скрещенными поляризаторами до максимума при круговой поляризации света на выходе из образца (Рис.1, темн. прямоуг). На Рис.2 представлена зависимость угла поворота q при фиксированном угле f = 22,50 от величины магнитного поля высокой однородности (пуст. прямоуг).

Результаты измерений могут быть объяснены из следующих соображений. Согласно [1-3], при перпендикулярном падении (kС3) линейно поляризованного света в случае Bz » 0 (малый зазор) нормальные оптические моды в образце также линейно поляризованы и угол поворота плоскости поляризации выходящего света (q) определяется выражением: