КУРСОВАЯ РАБОТА
по предмету «Сопротивление материалов»
«РАСЧЕТ ПРОСТРАНСТВЕННОЙ СТЕРЖНЕВОЙ СИСТЕМЫ»
Вариант № 10
Студент:
Группа:
Преподаватель:
Санкт-Петербург
2011 г.
РАСЧЕТ ПРОСТРАНСТВЕННОЙ СТЕРЖНЕВОЙ СИСТЕМЫ
Целью курсовой работы является определение перемещений в пространственной стержневой системе под действием заданных сил, определение матрицы жёсткости стержневой системы, выполнение расчёта на прочность и устойчивость для определения поперечных размеров стержней, обеспечивающих уровень напряжений ниже предела прочности.
1. Пространственная стержневая система разбивается на отдельные стержневые элементы (дискретизируется) по принципу приложения всех внешних сил, изменения геометрических характеристик и определения степеней свободы (перемещений) только на концах стержней. Данная система состоит из N = 13 стержневых элементов, которые пронумерованы в произвольном удобном порядке. Номера стержневых элементов обозначаются на схеме в кружках.
2. Для пространственной стержневой системы вводится глобальная система координат OXYZ для ориентации стержневых элементов, внешних сил и перемещений.
3. В концевых сечениях стержней (узлах) располагаются узловые системы координат для определения 3-х поступательных и 3-х вращательных степеней свободы, которые ориентированы так же, как и глобальная система координат OXYZ. Узловые степени свободы являются степенями свободы стержневой системы или глобальными степенями свободы.
4. Производится нумерация глобальных степеней свободы n=54 по следующим правилам.
4.1. Сначала определяются и нумеруются m=37 подвижных (на которых возможны перемещения) степеней свободы, затем нумеруются неподвижные степени свободы.
4.2. Нумерация начинается с узла имеющего минимальное количество соседних подвижных степеней свободы. Под соседними степенями свободы понимаются степени свободы, принадлежащие одному конечному (стержневому) элементу.
4.3. Следующие номера получают степени свободы узла ближайшего к узлу с минимальными номерами степеней свободы.
4.4. В каждом узле сначала нумеруются поступательные, затем вращательные степени свободы.
4.5. По направлениям осей координат степени свободы нумеруются в порядке x -> y -> z.
5. Для каждого стержневого элемента определяется направление его собственной (локальной) оси x, совпадающей с продольной осью.
6. Составляется матрица (файл stsysmi.prn) соответствия индексов (номеров) степеней свободы стержневой системы, состоящая из N строк по числу стержневых элементов. В каждой строке записываются 12 глобальных номеров степеней свободы каждого стержневого элемента соответствующих 12-ти собственным (локальным) степеням свободы каждого стержневого элемента. Выбранное направление собственной оси x каждого стержня определяет 6 «левых» и 6 «правых» номеров степеней свободы.
2 | 3 | 4 | 5 | 6 | 7 | 44 | 45 | 46 | 47 | 48 | 49 |
44 | 45 | 46 | 47 | 48 | 49 | 32 | 33 | 34 | 35 | 36 | 37 |
32 | 33 | 34 | 35 | 36 | 37 | 2 | 3 | 4 | 5 | 6 | 7 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
8 | 9 | 10 | 11 | 12 | 13 | 38 | 39 | 40 | 41 | 42 | 43 |
38 | 39 | 40 | 41 | 42 | 43 | 26 | 27 | 28 | 29 | 30 | 31 |
26 | 27 | 28 | 29 | 30 | 31 | 8 | 9 | 10 | 11 | 12 | 13 |
32 | 33 | 34 | 35 | 36 | 37 | 26 | 27 | 28 | 29 | 30 | 31 |
32 | 33 | 34 | 35 | 36 | 37 | 14 | 15 | 16 | 17 | 18 | 19 |
26 | 27 | 28 | 29 | 30 | 31 | 20 | 21 | 22 | 23 | 24 | 25 |
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
20 | 21 | 22 | 23 | 24 | 25 | 50 | 51 | 52 | 53 | 54 | 1 |
50 | 51 | 52 | 53 | 54 | 1 | 14 | 15 | 16 | 17 | 18 | 19 |
7. Составляется матрица (файл stsyscrd.prn) координат узлов стержневых элементов, состоящая из N строк по числу стержневых элементов. В каждой строке записываются 6 координат (x0, y0, z0, x1, y1, z1) центров «левого» и «правого» концевых сечений каждого стержневого элемента, соответствующих направлению собственной оси x каждого стержневого элемента.
0 | 0 | 0.6 | 0 | 0.5 | 0.6 |
0 | 0.5 | 0.6 | 0.28 | 0.15 | 0.6 |
0.28 | 0.15 | 0.6 | 0 | 0 | 0.6 |
0 | 0 | 0.6 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0.5 | 0 |
0 | 0.5 | 0 | 0.28 | 0.15 | 0 |
0.28 | 0.15 | 0 | 0 | 0 | 0 |
0.28 | 0.15 | 0.6 | 0.28 | 0.15 | 0 |
0.28 | 0.15 | 0.6 | 0.4 | 0.15 | 0.6 |
0.28 | 0.15 | 0 | 0.4 | 0.15 | 0 |
0.4 | 0.15 | 0.6 | 0.4 | 0.15 | 0 |
0.4 | 0.15 | 0 | 0.4 | 0 | 0 |
0.4 | 0 | 0 | 0.4 | 0.15 | 0.6 |
8. Составляется вектор (файл stsysp.prn) внешних узловых сил, действующих по каждой степени свободы.
1 | 0 | 10 | 0 | 19 | 0 | 28 | 0 | 37 | 0 | 46 | 0 |
2 | 0 | 11 | 0 | 20 | 0 | 29 | 0 | 38 | 0 | 47 | 0 |
3 | 0 | 12 | 0 | 21 | 0 | 30 | 0 | 39 | 0 | 48 | 0 |
4 | 0 | 13 | 0 | 22 | 0 | 31 | 0 | 40 | 0 | 49 | 0 |
5 | 0 | 14 | 0 | 23 | 0 | 32 | 0 | 41 | 0 | 50 | 0 |
6 | 0 | 15 | 0 | 24 | 0 | 33 | -10000 | 42 | 0 | 51 | 0 |
7 | 0 | 16 | 0 | 25 | 0 | 34 | 0 | 43 | 0 | 52 | 0 |
8 | 3000 | 17 | -50 | 26 | 0 | 35 | 0 | 44 | 0 | 53 | 0 |
9 | 0 | 18 | 0 | 27 | -5000 | 36 | 0 | 45 | 0 | 54 | 0 |
9. Составляется матрица (файл stsyssz.prn) геометрических характеристик стержневых элементов, с числом строк, равному числу стержневых элементов. В каждой строке записываются длина l [м], площадь поперечного сечения F[м2], три момента инерции Jx, Jy, Jz[м4] поперечного сечения и коэффициент kf изменения исходных размеров. Площадь сечения и моменты инерции рассчитываются на компьютере, согласно п. 10.
l F Jx Jy Jz kf
0.5 | 0.000724 | 0.00000001541 | 0.00000006668 | 0.00000002861 | 1 |
0.448 | 0.000724 | 0.00000001541 | 0.00000006668 | 0.00000002861 | 1 |
0.318 | 0.000724 | 0.00000001541 | 0.00000006668 | 0.00000002861 | 1 |
0.6 | 0.000724 | 0.00000001541 | 0.00000006668 | 0.00000002861 | 1 |
0.5 | 0.000724 | 0.00000001541 | 0.00000006668 | 0.00000002861 | 1 |
0.448 | 0.000724 | 0.00000001541 | 0.00000006668 | 0.00000002861 | 1 |
0.318 | 0.000724 | 0.00000001541 | 0.00000006668 | 0.00000002861 | 1 |
0.6 | 0.000724 | 0.00000001541 | 0.00000006668 | 0.00000002861 | 1 |
0.12 | 0.000724 | 0.00000001541 | 0.00000006668 | 0.00000002861 | 1 |
0.12 | 0.000724 | 0.00000001541 | 0.00000006668 | 0.00000002861 | 1 |
0.6 | 0.000724 | 0.00000001541 | 0.00000006668 | 0.00000002861 | 1 |
0.15 | 0.000724 | 0.00000001541 | 0.00000006668 | 0.00000002861 | 1 |
0.618 | 0.000724 | 0.00000001541 | 0.00000006668 | 0.00000002861 | 1 |
10. Расчет геометрических характеристик сечения и определение поля касательных напряжений.
10.1. Сечение изображается в масштабе и разбивается на N = 114 треугольных элементов близких по форме к равносторонним. Сечения, имеющие в своей основе прямоугольники, разбиваются на прямоугольные треугольники с отношением сторон не более 2.
10.2. Треугольники нумеруются в произвольном удобном порядке, а номера обводятся на схеме кружками.
10.3. Вершины треугольников образуют n = 75 узлов, которым в определенном порядке присваиваются глобальные номера. Сначала нумеруются m = 41 внутренних (не лежащих на контуре сечения) узлов, затем нумеруются внешние (лежащие на контуре сечения) узлы. Нумерация начинается с узла имеющего минимальное количество соседних внутренних узлов. Под соседними узлами понимаются узлы принадлежащие одной стороне треугольника. Следующие номера получают узлы ближайшие к узлам с минимальными номерами.
10.4. Составляется матрица (файл torsionm.prn) соответствия индексов (номеров) узлов, состоящая из N строк, равном числу треугольных элементов. В каждой строке записываются 3 глобальных (внешних) номера вершин каждого треугольного элемента соответствующих 3-м собственным локальным (внутренним) номерам вершин каждого треугольного элемента. Номера располагаются в порядке, соответствующем обходу вершин треугольников против часовой стрелки.
1
2 3
42 | 17 | 43 | 16 | 30 | 25 | 26 | 29 | 11 |
42 | 64 | 17 | 9 | 16 | 25 | 29 | 14 | 11 |
64 | 32 | 17 | 33 | 9 | 25 | 29 | 38 | 14 |
64 | 61 | 32 | 33 | 25 | 2 | 29 | 6 | 38 |
32 | 61 | 60 | 33 | 2 | 20 | 6 | 70 | 38 |
32 | 60 | 63 | 19 | 33 | 20 | 70 | 53 | 38 |
74 | 59 | 41 | 19 | 20 | 66 | 38 | 53 | 69 |
59 | 58 | 41 | 44 | 19 | 66 | 38 | 69 | 5 |
41 | 58 | 57 | 66 | 20 | 21 | 38 | 5 | 28 |
41 | 57 | 56 | 66 | 21 | 45 | 14 | 38 | 28 |
41 | 56 | 72 | 20 | 34 | 21 | 14 | 28 | 27 |
41 | 72 | 8 | 20 | 2 | 34 | 11 | 14 | 27 |
41 | 8 | 31 | 2 | 25 | 34 | 35 | 11 | 27 |
74 | 41 | 31 | 25 | 10 | 34 | 35 | 27 | 4 |
74 | 31 | 24 | 25 | 30 | 10 | 35 | 4 | 75 |
63 | 74 | 24 | 30 | 15 | 10 | 23 | 35 | 75 |
32 | 63 | 24 | 30 | 39 | 15 | 23 | 75 | 47 |
32 | 24 | 1 | 30 | 7 | 39 | 46 | 23 | 47 |
32 | 1 | 18 | 7 | 71 | 39 | 75 | 36 | 48 |
17 | 32 | 18 | 71 | 54 | 39 | 75 | 4 | 36 |
18 | 73 | 17 | 39 | 54 | 70 | 4 | 27 | 36 |
43 | 17 | 73 | 39 | 70 | 6 | 27 | 12 | 36 |
73 | 18 | 19 | 39 | 6 | 29 | 27 | 28 | 12 |
73 | 19 | 44 | 15 | 39 | 29 | 28 | 13 | 12 |
18 | 33 | 19 | 15 | 29 | 26 | 28 | 37 | 13 |
18 | 1 | 33 | 10 | 15 | 26 | 28 | 5 | 37 |
1 | 24 | 33 | 34 | 10 | 26 | 5 | 69 | 37 |
24 | 9 | 33 | 34 | 26 | 3 | 69 | 52 | 37 |
24 | 31 | 9 | 34 | 3 | 22 | 37 | 52 | 62 |
31 | 16 | 9 | 21 | 34 | 22 | 37 | 62 | 51 |
31 | 40 | 16 | 21 | 22 | 67 | 37 | 51 | 65 |
31 | 8 | 40 | 45 | 21 | 67 | 13 | 37 | 65 |
8 | 72 | 40 | 67 | 22 | 23 | 13 | 65 | 68 |
72 | 55 | 40 | 67 | 23 | 46 | 12 | 13 | 68 |
40 | 55 | 71 | 22 | 35 | 23 | 36 | 12 | 68 |
40 | 71 | 7 | 22 | 3 | 35 | 36 | 68 | 50 |
40 | 7 | 30 | 3 | 26 | 35 | 36 | 50 | 49 |
16 | 40 | 30 | 26 | 11 | 35 | 48 | 36 | 49 |
10.5. Составляется матрица (файл torsionf.prn) координат узлов, состоящая из n строк, равному числу узлов. В каждой строке записываются 2 координаты (y и z) каждого узла и весовой коэффициент w = 1.