Uf=(12—6) /2 = 3
. (2.18)Такою ж буде енергія утворення двох ізольованих вакансій. При виникненні ж дивакансій| число розірваних зв'язків буде не 12*2 = 24, а 23, і частка|доля| енергії утворення дефекту, що доводиться|припадає,приходиться| на один атом, виявиться в цьому випадку меншою.
До теперішнього часу виявлена структура деяких комплексів| дефектів. Так, крім одиночних в металах достатньо|досить| часто виникають дивакансії|. Кількість вакансій, що об'єднуються в пари, наприклад, поблизу температури плавлення, може досягти 10
від загального|спільного| числа вакансій.Важлива|поважна| особливість дивакансій| — їх велика рухливість, причина якої ясна з|із| рис. 2.1. Малюнок показує, що переходу, наприклад, атома А в одиночний вакантний вузол В заважають|мішають| два сусіди, атоми C|із| і D. Переходу ж атома А' в положення|становище|В' за наявності дивакансії| заважає|мішає| тільки|лише| один атом В. У зв'язку з великою рухливістю дивакансії| грають велику роль в дифузії в кристалах.
Приєднання до дивакансії|в ГЦК|ґратах третьої вакансії також енергетично вигідно. При цьому тривакансії| можуть мати різні конфігурації. Найчастіше це — плоскі (три вакансії лежать в одній площині|плоскості|) або тетраедричні| (чотири сусідні вакантні вузли утворюють тетраедр, в центр якого перейшов атом із|із| зайнятої|позиченої,посісти| їм раніше однієї з вершин тетраедра) конфігурації.
Рис. 2.1. Переміщення атома в плотноупакованій|площині|плоскості| при міграції: а) вакансії, б) дивакансія
Утворення вакансій зв'язане не тільки|не лише| із|із| звільненням|визволенням| якого-небудь вузла ґрат від атома, але і із|із| зсувом|зміщенням| навколишніх|довколишніх| атомів з|із| своїх колишніх положень|становищ|. Проведені для Сu розрахунки показали, що найближчі сусіди вакансії зміщені у бік вакансії приблизно на 0,016 а, а наступні|такі| сусіди — в протилежну сторону (на малу величину).
Утворення дефектів в іонних кристалах зв'язане з|із| дотриманням додаткової умови — необхідності збереження|зберігання| електронейтральності кристала. В цьому випадку виникають або дві одиночні вакансії протилежного знаку (дефект Шоттки), або вакансія і міжвузловий| атом (дефект Френкеля). При цьому тип виникаючих дефектів визначається специфікою кристала. Наприклад, для чистих лужно-галоїдних кристалів типові дефекти по Шоттки, а для галогенідів| срібла — дефекти по Френкелю. Вкажемо, що якщо при утворенні дефектів по Шоттки щільність кристалів зменшується, то при утворенні дефектів по Френкелю вона залишається незмінною.
Цікавим типом точкових дефектів є|з'являються,являються| міжвузлові| атоми. Раніше вважалося|лічилося|, що при утворенні міжвузлового| атома відбувається|походить| впровадження якого-небудь атома в простір між вузлами кристалічної решітки. Наприклад, для ГЦК| ґрат це означало, що міжвузлові| атоми можуть виникати у середині ребер елементарного осередку|чарунки,вічка,комірки| (октаедрична| конфігурація) або у середині тетраедрів, утворених чотирма з'єднувальними |атомами з|із| координатами [[000]], [[l/2, 1/2, 0]], [[1/2, 0, 1/2]] [[0,1/2, 1/2]]. Проте|однак| аналіз показав, що енергетичні вигіднішими конфігураціями є|з'являються,являються| гантелі, орієнтовані уздовж|вздовж,уподовж| напрямів|направлень| типу [100]. Центр тяжіння такої гантелі знаходиться|перебуває| у вузлі ґрат, з|із| якого раніше перебуваючий там атом змістився уздовж|вздовж,уподовж| напряму|направлення| [100]. Симетрично цьому атому уздовж|вздовж,уподовж| цього напряму|направлення| розташовується другий атом гантелі.
Рис. 2.2. Конфігурації з|із| між вузлових| атомів в ГЦК| ґратах: а) гантель уподовж|вздовж| [100], б) гантель уподовж|вздовж| [111], в) краудіонОтже, доданий|добавлений| в грати атом і один з атомів, що знаходився|перебував| раніше у вузлі, утворюють гантель з|із| центром у вузлі ґрат і віссю симетрії, направленої|спрямованої| уподовж|вздовж| [100]. Відстань між атомами гантелі складає приблизно 0,6 а (рис. 2.2). Існування таких гантельных| конфігурацій підтверджене також експериментальними даними по розсіянню рентгенівських променів [11]. Енергія утворення такого типу дефекту: складає величину близько 3 еВ| (для Сu). Стійкі також конфігурації, що складаються з декількох гантелей, наприклад дві паралельні гантелі або три взаємно ортогональні. Аналогічні типи точкових дефектів зустрічаються і в інших типах кристалічних решіток. Гантелі виявилися до того ж достатньо|досить| рухомими|жвавими,рухливими| типами дефектів. Їх висока рухливість зв'язана з можливістю| зміни орієнтації на 90° і із|із| зсувом|зміщенням| центру тяжіння в сусідній вузол. Не виключені і інші конфігурації, наприклад краудіон.
Виникнення міжвузлових| атомів зв'язане з рухом атомів ґрат. Якщо при утворенні вакансій атоми зміщуються приблизно на 2%, то при утворенні міжвузлового| атома — на 12%. Надмірний|надлишковий| об'єм|обсяг| за рахунок одиночних міжвузлових| атомів складає ~2,5 атомного об'єму|обсягу|. Він помітно зменшується при утворенні скупчень міжвузлових атомів.
Вище вже вказано|вказувалося|, що кристали з|із| точковими дефектами в певній кількості можуть бути термодинамічно рівноважні. Проте|однак| у ряді випадків виникають і надмірні|надлишкові| нерівноважні точкові дефекти.
Розрізняють три основні способи, за допомогою яких дефекти можуть бути створені: швидке охолоджування від високих до порівняно низьких температур (гартування|гартування|) дефектів, які були рівноважні до гартування|гартування|, пластична деформація, опромінювання|опромінення| швидкими частинками|частками,часточками|. Виникаючі в цих випадках типи точкових дефектів, як правило, ті ж, що і поблизу термодинамічної рівноваги. Проте|однак| відносні долі кожного типу дефектів можуть істотно|суттєво| відрізнятися від характерних|вдача| для рівноваги. Тому у вивченні дефектів ґрат особливу роль відіграють експериментальні методи, такі, як вивчення електроопору (залежності його від температури і часу), розсіяння рентгенівських променів і нейтронів, залежності теплоутримання| від температури і часу, механічних властивостей, ядерного гамарезонансу, анігіляції позитронів і т.д.
Своєрідність точкових дефектів в іонних кристалах полягає в можливому захопленні|захваті| вакансіями (або іншими дефектами) електронів, результатом чого є|з'являється,являється| помітна зміна електронної структури, поява додаткових локальних енергетичних рівнів, що змінюють|зраджують| умови поглинання електромагнітного випромінювання.
Це приводить|призводить,наводить| до фарбування прозорих іонних кристалів. Вельми|дуже| поширеним типом дефектів подібного типа є|з'являються,являються|F-центри забарвлення|фарбування|, що спостерігаються в щільно-галоїдних| кристалах і що є утворення|утворенням|, що складається з електрона і утримуючої його аніонної вакансії. Крім F-центрів забарвлення|фарбування| в іонних кристалах з'являються|появляються| і більш складні утворення, наприклад комплекси дірка—вакансія|, комбінації F-центрів і т.д.
РОЗДІЛ 3. КЛАСИФІКАЦІЯ ДЕФЕКТІВ
3.1. Вакансії і міжвузлові| атоми
Порушення правильної періодичності кристала викликають|спричиняють| не тільки|не лише| атоми домішок|нечистот|, але і власне структурні дефекти, тобто різна неправильність в розташуванні атомів основної речовини кристала. Такі структурні дефекти, як і атоми домішок|нечистот|, створюють в окремих вузлах ґратки порушення правильного чергування хімічних зв'язків, що може приводити|призводити,наводити| до появи в забороненій зоні локальних рівнів енергії.
Простим типом структурних дефектів є|з'являються,являються| вакансії (дефекти по Шоттки), які є просто порожні|пусті| вузли ґрат. Вони схематично показані на прикладі|зразку| ґратки з'єднання|сполучення,сполуки| типу АВ| на рис. 3.1, а.Тут великі кулі зображають|змальовують| атоми А, малі кулі — атоми В. Вакансії можуть бути як впростих ґратках А, так і впростих ґратках В. Процес їх утворення| можна представити|уявити| як перехід спочатку одного з поверхневих| атомів на саму поверхню кристала. У утворенні| вакансії, що утворилася тепловим рухом, може бути покинутий один з глибших атомів, чому виникневакансія