Смекни!
smekni.com

Влияние температуры и магнитного поля на электрическую проводимость и аккумуляцию энергии в конд (стр. 3 из 9)

.

Составляющая силы Fy и Fzвыражаются аналогичными формулами.

;

;

;

.

Если ось Х направить вдоль вектора

, то

.

Дипольность обеспечивает частице энергию

.

В практике исследований проводимости МЖ обычно используют однородное ЭП.

Магнитное поле на электрический (неподвижный) заряд не действует, согласно общему выражению для силы Лоренца

,

где

– электрическая и магнитная составляющие.

При

,
и тогда
. Если же
, то даже при
.

Т.к. тепловое движение хаотично, то действие силы Лоренца на МЖ в среднем никак не ощущается, поскольку ионы-носители заряда являются частицами замкнутой системы. Небеспорядочной скоростью могут обладать носители в дрейфе (ток) или в едином гидродинамическом потоке. Тогда сила Лоренца подействует на каждую частицу одинаково и вся система носителей должна сдвинуться. При этом часть носителей будет увеличена из потока и уменьшить ток.

II.2.1. Действие магнитного поля на движущийся заряд

Каждый проводник с током создает в пространстве МП. Но электрический ток в проводнике есть движение заряженных частиц: в металлах – это движение е-, в электролитах – ионов, в газовом разряде – и ионов, и е-. Отсюда можно заключить, что всякий движущийся заряд создает вокруг себя МП. Найдем величину этого поля.

Рассмотрим малый отрезок провода длиной l с током i. Этот отрезок создает в некоторой точке, удаленной на расстояние r, напряженность поля

.

Но силу тока можно выразить через плотность тока j и сечение провода

, а плотность тока – через концентрацию заряженных частиц n и их скорость
. Это дает
, где N – полное число частиц в отрезке провода. Напряженность поля можно представить в виде
.

Напряженность поля, вызываемого одной заряженной частицей, имеет значение

.

Направление этого поля перпендикулярно к скорости v частиц и к радиусу – вектору r, проведенному из заряда в рассматриваемую точку, и подчиняется правилу правого буравчика. Используя обозначение векторной алгебры

.

Эта формула выражает напряженность поля «+» заряда, движущегося со скоростью v. Если движется «-» заряд, то в формуле нужно заменить е на -е.

Движущийся заряд по своим магнитным действиям эквивалентен элементу тока

. В этих формулах v – относительная скорость, т.е. скорость относительно наблюдателя и тех приборов, которые измеряют МП.

Т.к. всякий ток есть движение заряженных частиц, следовательно, на движущийся заряд в МП действует сила. Определим величину этой силы. На провод длиной l с током i действует сила

, где B – магнитная индукция. С другой стороны
, где N – полное число движущихся заряженных частиц внутри провода. Учитывая, что направление
совпадает с направлением скорости
движения «+» частиц (с направлением тока), можно выражение для силы представить в виде:

.

Сила, действующая на провод, пропорциональна полному числу движущихся частиц, а значит, сила, действующая на одну частицу, равна

.

Направление этой силы перпендикулярно к направлению скорости v и магнитной индукции B и подчиняется правилу правого буравчика (см. рис.).

Полученный результат можно выразить в виде векторной формулы

.

Если имеется еще ЭП, то полная сила равна

.

Эту силу, действующую на движущийся заряд, называют силой Лоренца.

Эта формула получена на основе анализа опытных данных о взаимодействии неподвижных контуров с током. Поэтому скорость v в формуле есть скорость относительно МП.

Сила Лоренца проявляется при движении е- и ионов в МП.

II.2.2. Действие МП на магнитный диполь

Другим, определяющим специфичность МЖ, структурным эффектом является магнитный диполь – микрокристаллический агрегат в коллоидной частице. В измерениях с участием МП используются однородные и неоднородные поля. Действие этих полей на магнитный диполь аналогично действию ЭП на электрический диполь.

Действительно, пусть магнитный диполь

помещен в произвольное МП
, тогда на него действует механический момент:

.

Выражение упростим, если поле будет однородным, т.к. система координат может быть выбрана так, чтобы

или
, или оба вектора совпадали с одной (двумя) осями координат. Энергия диполя просто задается формулой
. Магнитный диполь в случае действия на него неоднородного МП
подвержен действию магнитной силы:

.

Так как в местах расположения магнитных диполей токи, образующие поле отсутствуют, то

, но тогда

В однородном МП все производные равны нулю, следовательно,

. Поэтому МЖ должна подвергнута действию ИМП. Наибольшее влияние на дрейф будет достигнуто, если сила
(т.к. другой упорядочивающей скорости нет). Следовательно,
должна быть коллинеарна напряженности ЭП, создающего ток.

Пусть

, тогда
или
. Это возможно, если
, т.е. когда
и
.

В этом случае

. Эта сила будет вытягивать диаполи при благоприятной их ориентации до полной минимизации магнитной поступательной энергии. Поле такого рода однонаправлено, но неоднородно из-за различной густоты магнитных силовых линий. Такое поле может быть создано при помощи полосового постоянного магнетита вблизи его полюсов, площадь сечения которых заметно больше площади КЯ, или с помощью соленоида с теми же габаритами.