Смекни!
smekni.com

Влияние температуры и магнитного поля на электрическую проводимость и аккумуляцию энергии в конд (стр. 2 из 9)

Результаты исследования анизотропии электропроводности МЖ от величины МЖ от величины МП, представлены на рис. 2 (где кривая 1 снята для исходной жидкости, кривая 2 – после воздействия на жидкость ЭП), подтвердили эффективность предложенной методики исследования.

Постановка задачи

Ранее было установлено, что при пропускании электрического тока через КЯ с МЖ в ней накапливается электрический заряд, который можно заметить при разряде КЯ на нагрузку (самописец или измерительный прибор). Как оказалось, разрядный ток подчиняется экспоненциальному закону и по величине тока можно определить электрическую емкость ячейки.

При исследовании ВАХ был обнаружен гистерезисный эффект, который можно объяснить инертностью протекания релаксационных процессов в МЖ. МЖ обладает способностью накапливать заряд под действием ЭП, поэтому возникает запаздывание в уменьшении силы тока при уменьшении величины напряжения, подаваемого на ячейку. Гистерезис наблюдается, если время релаксации МЖ превышает или соизмеримо с периодом наращивания напряжения. Если время релаксации много меньше периода наращивания напряжения, то ВАХ приобретает линейный характер.

При исследовании зависимости пикового значения разности потенциалов на ячейке от продолжительности заряда МЖ было обнаружено существование предельного напряжения – эффект «насыщения» – по величине меньшего, чем напряжение, подаваемое на ячейку от источника питания.

В данной дипломной работе ставятся следующие задачи:

I. 1. Показать возможности переноса заряда теоретическим путем.

2. Действие ЭП на свободные заряды и электрические диполи.

3. Действие МП на магнитный заряд.

II. Снятие ВАХ в задаваемом темпе наращивания напряжения, подаваемого на КЯ, нагреваемую определенной температуры и наблюдение за ходом кривой.

III. 1. Выяснение зависимости пикового значения разрядного тока КЯ с МЖ при ее заряде от продолжительности заряжения, заряжающего напряжения и температуры МЖ в КЯ.

2. Выяснение влияния времени саморазряда ячейки на ход кривой разрядного тока, на величину пикового значения разрядного тока, а также выяснение влияния температуры на время саморазряда (на ход кривой разрядного тока и на его пиковое значение).

IV. Выяснение влияния МП в пределах

на ВАХ КЯ и на кривую разрядного тока.

ГЛАВА II. ДЕЙСТВИЕ ПОЛЕЙ
НА СТРУКТУРНЫЕ ЭЛЕМЕНТЫ МАГНИТНОГО КОЛЛОИДА

II.1.1. Действие ЭП на свободный заряд

Одним из непременных элементов МЖ является свободный электрический заряд изначально свободный или появившийся из ионной атмосферы частицы – дисперсной фазы (мицеллы) в результате действия какого-либо фактора. Одним из таких факторов может быть ЭП при пропускании тока. Это поле легко разрушает оболочку эластично связанную с частицей, предварительно вытягивая мицеллу в диполь и отрывая от нее иона, переводя из разряда связанных в свободные. Свободные электрические заряды при наложении на МЖ ЭП подвержены действию этого поля.

Если ЭП вызвано одним точечным зарядом q, величина напряженности поля получается непосредственно из закона Кулона путем деления обеих частей равенства на величину второго заряда:

.

Используя закон Кулона в векторной форме запишем напряженность ЭП точечного заряда также в векторной форме:

.

Если известна напряженность поля в какой-либо точке, то тем самым определена и сила, действующая на электрический заряд, помещенный в эту точку. А именно:

;

Кулоновская сила

обуславливает потенциальную энергию W этого поля

,

где j – потенциал поля в той точке, где находится в данный момент свободный заряд.

.

II.1.2. Действие ЭП на электрический диполь

Наряду со свободными зарядами в магнитном коллоиде существуют электрические диполи, образованные как результат деформации:

а) при прямом действии ЭП; б) при механическом движении в силу действия кулоновских и вязкостных сил.

Найдем силу, действующую на диполь в ЭП, причем будем считать сначала, что поле однородно. На концы диполя действуют равные по величине силы
. Эти силы направлены в противоположные стороны и образуют пару сил. Момент M этой пары равен:

где a – угол между вектором

и напряженностью
поля. Величину
называют моментом диполя, который является вектором. Он направлен также, как и
, т.е. от отрицательного заряда к положительному.

.

Пользуясь понятием момента диполя, можно написать выражение для момента пары сил, действующей на диполь, в виде:

.

Направление момента этой пары совпадает с направлением оси вращения диполя, т.е. перпендикулярно к

и
.

Или же, используя векторную алгебру, можно записать:

.

В однородном поле на диполь действует только пара сил, которая стремится повернуть диполь таким образом, чтобы

и
были параллельны. Для того, чтобы повернуть диполь в ЭП на некоторый угол, нужно совершить определенную работу. Т.к. эта работа равна увеличению потенциальной энергии диполя, то отсюда можно найти выражение для энергии диполя в ЭП. Примем за нуль энергию диполя, перпендикулярного к направлению поля
. Тогда энергия диполя, момент которого составляет угол a с направлением поля, равна

.

Рассмотрим теперь диполь в неоднородном поле и положим, что момент диполя параллелен направлению поля

(см. рис.).

Силы, действующие на концы диполя, уже неодинаковы, и поэтому их результирующая ¹ 0. На диполь в неоднородном поле действует сила, стремящаяся передвинуть диполь в область поля с большей напряженностью. Найдем величину той силы. Направим координатную ось X вдоль момента диполя и будем считать, что длина диполя
мала (элементарный диполь). Сила, действующая на «-» конец диполя, есть
, где E – напряженность поля в точке нахождения заряда –q. Сила, действующая на «+» конец диполя, равна
, где
– длина диполя. Поэтому полная сила

.

В однородном поле

и результирующая сила равна нулю.

Если диполь находится в неоднородном поле и не параллелен полю, то на него действуют и пара сил, стремящаяся повернуть диполь параллельно полю, и сила, втягивающая диполь в область более сильного поля.

Пусть

– составляющие напряженности ЭП в прямоугольных осях координат, а
– составляющие момента диполя в тех же осях. Тогда составляющая силы по оси Х равна