Спектральные характеристики
В первой части работы я поставил себе цель описать линейные операторы в целом, а также подробно рассказать о важной характеристике спектра операторов – спектральном радиусе.
В этой части работы я подробнее остановлюсь на не менее важной характеристике спектров – резольвенте, и расскажу о связи этой характеристики с подвидами спектра оператора – с остаточным, точечным и непрерывными его частями. Вначале, опять же, необходимо остановиться на некоторых основных определениях и понятиях теории линейных операторов. Итак:
- Пусть A - оператор, действующий в конечномерном линейном пространстве E. Спектром оператора называется множество всех его собственных значений.
- Квадратную матрицу n×n можно рассматривать как линейный оператор в n-мерном пространстве, что позволяет перенести на матрицы «операторные» термины. В таком случае говорят о спектре матрицы.
- Пусть A - оператор, действующий в банаховом пространстве E над полем k. Число λ называется регулярным для оператора A, если оператор R(λ) = (A − λI)-1, называемый резольвентой оператора A, определён на всём E и непрерывен.
- Множество регулярных значений оператора A называется резольвентным множеством этого оператора, а дополнение резольвентного множества - спектром этого оператора.
- Максимум модулей точек спектра оператора A называется спектральным радиусом этого оператора и обозначается через r(A). При этом выполняется равенство:
Это равенство может быть принято за определение спектрального радиуса,приусловии существования данного предела.
Теперь рассмотрим состав самого спектра. Он неоднороден, и состоит из следующих частей:
- дискретный (точечный) спектр - множество всех собственных значений оператора A - только точечный спектр присутствует в конечномерном случае;
- непрерывный спектр - множество значений λ, при которых резольвента (A - λI)-1 определена на всюду плотном множестве в E, но не является непрерывной;
- остаточный спектр - множество точек спектра, не входящих ни в дискретную, ни в непрерывную части.
Таким образом, мы видим, что спектр оператора состоит из 3-х больших частей, принципиально различных.
Теорема 1:
ограничен. Тогда является регулярной точкой.Доказательство.
. Пусть . Тогда . - банахово, , причем он ограничен:Резольвента существует и ограничена. Чтд.
Теорема 2:
не принадлежит точечному спектру осуществляет биекцию на .Доказательство.
- Если построена биекция, то не существует
, за исключением тривиальной.- Если - точка точечного спектра, то
, что противоречит биективности .Теорема 3:(Тождество Гильберта)
Доказательство.
, , , верно => Чтд.Следствия:
1)
- коммутативность резольвенты.2)
(т.к. непрерывна по в точке ), т.е. она бесконечно дифференцируема (аналитическая функция).Итак,
- аналитическая оператор-функция на множестве регулярных точек (резольвентном множестве). - разложение в ряд Лорана (имеет место при , но, возможно, и в большей области).Упражнение: (Примеры вычисления спектрального радиуса)
,
.Возьмем
.ТогдаТаким образом
. Эта оценка достижима при , т.е. ,и rc(A)=1.Теорема 4: всякая к.ч
, есть регулярная точка самосопряженного оператора A.Доказательство.
]
регулярная точка, значит не собственное значение и . Проверим ограниченность .Полезнейшим приложением спектральной теории в физике является теория спектров электрических сигналов. Суть теории состоит в том, что любой сигнал на входе линейной цепи возможно представить совокупностью гармонических колебаний, или тестовых сигналов, заданной частоты, вопрос такого разложения состоит в нахождении амплитуд результирующих колебаний. Последние вычисляются определенным образом.
Классическое преобразование Фурье представляет из себя линейный оператор.
Спектральная теория здесь работает следующим образом – для периодических входных сигналов для нахождения соответствующих амплитуд используется интегральное преобразование – дискретный Фурье- образ:
в котором разложение начинается с частоты следования wк. В данном случае очевидно, что, раз выходной сигнал представляется суммой бесконечного ряда, то мы имеем дело с точечным спектром сигнала, поскольку он дискретен. Следовательно, любое периодическое колебание можно рассматривать как сигнал с дискретным спектром, поскольку непрерывным спектром он не обладает. Однако, если же взять непериодический сигнал, например, единичный прямоугольный импульс, то вводится понятия прямого и обратного преобразований Фурье:
,