Смекни!
smekni.com

Молекулярна фізика і термодинаміка (стр. 1 из 8)

Зміст

ІІ Молекулярна фізика і термодинаміка

5 Загальні положення та поняття теорії

1 Предмет дослідження. Термодинамічні системи. Термодинамічні параметри. Термодинамічний та статистичний методи дослідження термодинамічних систем.

2 Ідеальний газ як модельне тіло для дослідження термодинамічних систем. Дослідні газові закони. Рівняння стану ідеальних газів.

3 Основні положення та основні поняття молекулярно-кінетичної теорії. Фізичний зміст термодинамічних параметрів. Теорема про рівнорозподіл енергії за ступенями свободи (принцип Больцмана) Внутрішня енергія ідеального газу.

6 Елементи статистичної фізики

1 Статистичний метод дослідження термодинамічних систем. Зв’язок термодинамічних параметрів з динамічними характеристиками руху молекул. Відомості з теорії ймовірностей. Статистичний розподіл молекул та його значення.

2 Максвелівський розподіл молекул за швидкостями. Середньостатистичні значення швидкостей руху молекул та їх взаємозв’язок.

3 Барометрична формула. Досліди Перена з визначення числа Авогадро. Класичний розподіл молекул за енергіями

7 Термодинаміка. Перший закон термодинаміки

1 Термодинамічна система. Внутрішня енергія термодинамічної системи. Робота та кількість теплоти. Перший закон термодинаміки

2 Теплоємність тіл. Застосування першого закону термодинаміки до ізопроцесів. Теплоємність ідеальних газів в ізопроцесах

3 Адіабатичний процес. Внутрішня енергія та робота в адіабатичному процесі. Рівняння Пуасона.

8 Другий закон термодинаміки

1 Термодинамічні процеси. Оборотні та необоротні процеси. Колові процеси (цикли). Коефіцієнт корисної дії (ККД) циклу

2 Цикл Карно та його ККД. Зведена теплота. Ентропія. Вільна та зв’язана частини внутрішньої енергії.

3 Теорема Карно. Другий закон термодинаміки. Абсолютна термодинамічна шкала температур

4 Статистичне тлумачення ентропії та другого закону термодинаміки. Нерівність Клаузиуса та критика теплової смерті всесвіту

ІІ Молекулярна фізика і термодинаміка

5Загальні положення та поняття теорії

1 Предмет дослідження. Термодинамічні системи. Термодинамічні параметри. Термодинамічний та статистичний методи дослідження термодинамічних систем.

2 Ідеальний газ як модельне тіло для дослідження термодинамічних систем. Дослідні газові закони. Рівняння стану ідеальних газів.

3 Основні положення та основні поняття молекулярно-кінетичної теорії. Фізичний зміст термодинамічних параметрів. Теорема про рівнорозподіл енергії за ступенями свободи (принцип Больцмана) Внутрішня енергія ідеального газу.

1 Предмет дослідження. Термодинамічні системи. Термодинамічні параметри. Термодинамічний та статистичний методи дослідження термодинамічних систем.

Будову та внутрішній рух тіл та систем, що складаються з дуже великої кількості складових елементів (атомів, молекул, елементарних часток, інших тіл, навіть зірок та інших небесних тіл - молекул в подальшому) вивчають два взаємодоповнюючих розділи фізики: молекулярна фізика та термодинаміка. Предмет їх дослідження носить назву термодинамічної системи. Дослідження термодинамічних систем відбувається принципово різними методами, які взаємно доповнюють один одного.

Термодинамічними називаються системи, що містять значну кількість складових елементів (теоретично N @ 1010...1020 елементів) і підкоряються законам термодинаміки. На практиці буває досить кількох сотень складових елементів. Величини, що характеризують стан термодинамічної системи, носять назву параметрів стану. Основним параметром стану термодинамічної системи є її температура (Т). Температура характеризує ступінь нагрітості системи і визначається через поняття теплової рівноваги системи чи систем. Тілам, що знаходяться в стані теплової рівноваги приписується однакова температура. Вимірюється температура термометрами.

Зміна температури системи призводить до зміну об’єму тіл, або тиску, або внутрішньої електропровідності і таке інше. Ці зміни легко відмічаються і використовуються для вимірів температури. Властивості, зміна яких використовується для вимірів температури, називаються термометричними, а тіла, що мають такі властивості, називаються термометричними тілами. Термометричні тіла становлять основу будови термометрів - приладів для вимірювання температури.

В міжнародній системі одиниць SІ температура вимірюється в кельвінах (К). Один кельвін - це одна сота температурного інтервалу від потрійної точки рівноваги води (рідина, лід і пара) до точки її кипіння. В наукових дослідженнях використовується абсолютна термодинамічна шкала температур, яка будується за розглядом особливостей коефіцієнта корисної дії (ККД) теплових машин. Тому, що він не може бути рівним нулю, або бути більшим за нуль, термодинамічна температура може бути тільки позитивною (або тільки від’ємною, за домовленістю), абсолютний нуль температури - теоретично недосяжна величина. В протилежному випадку ККД теплових машин міг бути 100% або більше, що суперечить другому закону термодинаміки (і людському досвіду).

В практиці використовуються різні шкали. Найбільше використання має шкала Цельсія, де за нуль приймається точка танення льоду (потрійна точка), а за 100оС - точка кипіння води. Одиниця вимірювання - 1оС = 1К.

Значення температури за різними шкалами зв’язані між собою: t = =Т273 К, де t - температура за шкалою Цельсія; Т - температура за абсолютною термодинамічною шкалою.

Молекулярно-кінетична теорія надає температурі фізичного змісту, як величині пропорційній середній кінетичній енергії поступального руху молекул.

Внутрішньою енергією (Е) називається енергія тіл, що складають систему. В найпростішому випадку вважається, що в системі не відбувається ні хімічних, ні термоядерних, ні інших перетворень такого роду. Тому внутрішня енергія системи - це енергія механічного руху (кінетична і потенціальна) структурних елементів (молекул), що створюють систему, енергія їх неупорядкованого руху.

Кількість теплоти (Q) є міра зміни внутрішньої енергії в теплових процесах, що не супроводжуються виконання механічної роботи (тобто в процесах, де внутрішня енергія хаотичного руху одних тіл переходить у внутрішню енергію інших тіл системи чи систем). Кількість теплоти, як і внутрішня енергія, вимірюється в джоулях.

Якщо параметри термодинамічної системи фіксовані, то йдеться про стан системи. Стан називається рівноважним, якщо кожен з параметрів у всіх точках системи має однакове значення.

Зміна стану термодинамічної системи називається термодинамічним процесом. Термодинамічний процес, що відбувається через проміжні рівноважні стани, називається квазістатичним.

2 Ідеальний газ як модельне тіло для дослідження термодинамічних систем. Дослідні газові закони. Рівняння стану ідеальних газів.

Для вивчення найбільш загальних властивостей термодинамічних систем вводиться модельна термодинамічна система – ідеальний газ. Ідеальний газ, в цьому сенсі, це термодинамічна система, що має найбільш загальні властивості всіх термодинамічних систем.

Ідеальний газ є досить корисним для вивчення найбільш загальних властивостей речовини. При вивченні різних властивостей ця модель корегується відповідним чином. Найбільш проста модель ідеального газу використовується при вивченні загальних властивостей газів. Ця модель повинна мати найбільш характерні властивості присутні газовому стану речовини.

Молекулярно-кінетична теорія свідчить, що при переході речовини в газоподібний стан значно збільшується середня відстань між молекулами і стає значною порівняно з розмірами молекул; руйнуються дальній і ближній порядки в розташуванні молекул і їх рух стає хаотичним; сили взаємодії між молекулами на відстанях, що дорівнюють середнім, стають досить малими. Тому ідеальний газ для вивчення поведінки газів - це газ, що складається з матеріальних точок, які рухаються абсолютно хаотично і сили взаємодії між якими відсутні.

Для ідеальних газів справедливий закон Авогадро, який стверджує, що в рівних об’ємах при рівних умовах міститься однакове число молекул. Один моль довільної речовини містить NА = 6,023×1023 моль-1 - число Авогадро молекул. На підставі закону Авогадро моль ідеальних газів при нормальних умовах (тиск Ро = 760 мм рт.ст. = 1,015×105 Па; температура То = 273,15 К) займає один і той же, незалежно від природи ідеального газу, об’єм, що, як показує досвід, дорівнює Vм = 22,4×10-3 м3/моль.

Для суміші ідеальних газів справедливий закон Дальтона: тиск суміші газів дорівнює сумі парціальних тисків газів суміші:

Р = Р1 + Р2 + ... + Рn . (5.1)

Парціальним тиском Рі називається тиск, що його чинив би і-тий ідеальний газ суміші, якби він займав самостійно об’єм посудини. Цей закон є відображенням принципу суперпозиції, принципу незалежності дії сил.

Співвідношення між параметрами одного і того ж стану термодинамічної системи носить назву рівняння стану; співвідношення, що встановлює зв’язок між параметрами термодинамічної системи в різних станах термодинамічного процесу, носить назву закону.

Закони ідеальних газів були встановлені дослідним шляхом і мають місце для постійної маси ідеального газу. Термодинамічні процеси, що відбуваються за постійного значення одного з параметрів, називаються ізопроцесами.

Ізотермічний процес було досліджено дослідниками Бойлем та Маріоттом. Закон Бойля-Маріотта стверджує, що для постійної маси ідеального газу за сталої температури добуток тиску на об’єм залишається незмінним: