Смекни!
smekni.com

Молекулярна фізика і термодинаміка (стр. 7 из 8)

Цикл Карно має принципове значенняу розумінні термодинамічних процесів ще і тому, що довільний рівноважний оборотний цикл може бути представленим як суперпозиція циклів Карно, як це видно з рис. 8.3. Кожна ізотерма та кожна адіабата внутрішніх циклів Карно обходиться двічі в протилежних напрямках для сусідніх циклів. Таким чином всі внутрішні цикли взаємно знищуються і, при збільшенні кількості внутрішніх циклів до нескінченості, залишається тільки зовнішня оболонка досліджуваного циклу.

Аналіз виразу для ККД циклу Карно дозволяє ввести ентропію яка є, наряду з внутрішньою енергією, ще однією однозначною функцією параметрів стану термодинамічної системи. Введення ентропії пов’язане з поняттям зведеної теплоти, величини що дорівнює відношенню кількості теплоти, отриманої в ізотермічному процесі до температури процесу:

(8.8)

Сума зведених теплот оборотного циклу Карно дорівнює нулю. Дійсно, перепишемо вираз для ККД циклу (8.7) в іншому вигляді:

(8.9)

Зважаючи на те, що зведені теплоти

та співставивши їх з виразом (8.9), отримаємо що

(8.10)

де враховано, що в адіабатичних процесах „2®3” та „4®1” кількість підведеної теплоти і, відповідно, зведені теплоти дорівнюють нулю.

Тому, що довільний оборотний цикл можна представити як нескінчену сукупність оборотних циклів Карно, можна записати, що

(8.11)

Рівність нулю інтеграла (8.11) означає, що підінтегральний вираз є повним диференціалом деякої однозначної функції параметрів стану термодинамічної системи:

(8.12)

ВеличинаSназивається ентропією термодинамічної системи. Це така однозначна функція параметрів термодинамічної рівноважної системи, зміна якої дорівнює сумі зведених теплот у відповідному рівноважному процесі

(8.13)

Ентропія величина суто скалярна. Тому що введена через різницю вона обчислюється з точністю до довільної константи; має розмірність

В ізотермічних процесах, наприклад танення льоду та випаровування води при кипінні це відповідно

.

В процесах нагрівання ентропія зростає, в процесах остигання – зменшується.

Для вияснення фізичного змісту ентропії скористаємось записом (7.4) диференціальної форми першого закону термодинаміки та виразом

що випливає з визначення (8.12):

(8.14)

Зважаючи на те, що

маємо

і, підставивши його в вираз (8.14), отримаємо

(8.15)

В співвідношенні (8.15) фігурує ще одна однозначна функція параметрів стану рівноважної термодинамічної системи

(8.16)

яка називається вільною енергією, тому що визначає собою ту частину внутрішньої енергії термодинамічної системи яка максимально може бути перетвореною у роботу. Таке трактування вільної енергії стає зрозумілим, якщо рівняння (8.15) примінити до ізотермічного процесу, в якому вся теплота переходить у роботу [див. рівняння (7.13)], тобто виконується максимально можлива робота за рахунок теплоти. Дійсно, примінимо вираз (7.14) до ізотермічного процесу

, в якому вся теплота переходить в роботу [див. вираз (7.13)], тобто виконується максимально можлива робота за рахунок теплоти:

(8.17)

Відповідно, з виразу (8.16) слідує, що ентропія визначає собою ту частину внутрішньої енергії, яка ніколи не може бути перетвореною в корисну роботу. Тобто ентропія визначає собою частину знеціненої внутрішньої енергії термодинамічної системи. В цьому полягає її значення.


4. Теорема Карно. Другий закон термодинаміки. Абсолютна термодинамічна шкала температур.

З введенням ентропії можна довести важливе положення термодинаміки, що носить назву теореми Карно, яка стверджує що термічний ККД оборотного циклу Карно не залежить від природи робочого тіла і визначається тільки температурами нагрівача та холодильника. Для доведення теореми Карно скористаємося діаграмою „T-S” (рис. 8.4), в якій цикл Карно не залежно від природи робочого тіла зображається у вигляді прямокутника 1®2®3®4®1.

З визначення ентропії (8.12) слідує, що
. Кількість теплоти, отриманої в ізотермічному процесі 1®2
та переданої холодильнику в процесі 3®4
. Робота, виконана робочим тілом в циклі Карно
тобто зображається площею заштрихованого прямокутника. Відповідно ККД циклу:

(8.18)

що повністю співпадає з виразом (8.7) і доводить, що ККД оборотного циклу Карно не залежить від природи робочого тіла і тим саме доводить теорему Карно.

Довільний оборотний цикл, виконаний при максимальній температурі Тmax та мінімальній Тmin представляється деяким циклом, графік якого зображено пунктирною лінією з своєю штриховкою внутрі графіка відповідного циклу Карно. Як це показав Карно,та як це слідує із співставлення цих графіків, ККД довільного оборотного циклу не може перевищувати ККД циклу Карно:

(8.19)

Приймемо без доведення також висновок, що термічний ККД довільного необоротного циклу, що виконується між двома джерелами теплоти з температурами Тmax та Tminзавжди менше ККД відповідного оборотного циклу:

(8.20)

Перший закон термодинаміки за своїм змістом є закон збереження і перетворення енергії в теплових процесах. Він відповідає на питання скільки куди і в якій кількості та якості передано внутрішньої енергії термодинамічної системи. Але він не дає відомостей про направленість протікання процесів. Таку відповідь дає другий закон термодинаміки.

Існують декілька якісних формулювань другого закону термодинаміки які є рівноцінними та випливають одне з одного:

1 Неможлива самодовільна передача теплоти від тіла менше нагрітого до тіла більше нагрітого. (Р. Клаузиуса)

2 Неможливий замкнений процес, єдиним результатом якого було б виконання роботи за рахунок охолодження одного тіла або неможливий вічний двигун другого роду (perpetuummobileII), тобто двигун що міг би працювати, наприклад, за рахунок споживання внутрішньої енергії світового океану без холодильника. (В. Томсон, М. Планк)

3 Неможливо створити цикл, ККД якого був би рівним або більшим за сто відсотків.

Перше формулювання є майже очевидним і підтверджується практикою та досвідом. В холодильних машинах тепло передається від менш нагрітих тіл до більш нагрітих, але це відбувається за рахунок роботи супутнього процесу, а не самодовільно. Відносно другого формулювання необхідно відмітить, що в ізотермічному процесі все тепло перетворюється в роботу, але замкненим ізотермічний процес не може бути.

Друге формулювання випливає з першого і навпаки. Дійсно, якщо б була можливість самодовільно передавати енергію від менш нагрітого тіла до більш нагрітого, то був би можливим, наприклад цикл Карно, в якому за рахунок отриманої від нагрівача за температури Т1 кількості теплоті Q1 була б виконана робота A=Q1-½Q2½, де Q2- кількість теплоти, відданої холодильнику з температурою Т2<T1.. Після цього від холодильника теплота Q2 передається до нагрівача і робота виконується тільки за рахунок охолодження нагрівача.

Трете формулювання означає, що вся теплота повинна перетворюватись в роботу, або навіть отримана робота буде більшою за кількість отриманої робочим тілом від нагрівача теплоти, що суперечить і першому і другому формулюванням другого закону термодинаміки.