Законы фотоэффекта. Формула Эйнштейна для фотоэффекта.
Фотоэффектом называют явление возникновения электронного облака над поверхностью в-ва под действием света. Фотоэффект безинерционен. Законы фотоэффекта были открыты Столетовым. 1-й закон : кол-во электронов, вырываемых светом из металла в единицу времени, прямо пропорционально интенсивности световой волны. 2-й закон : максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от интенсивности света. Если частота света меньше определенной для данного в-ва частоты, то фотоэффект не наблюдается(красная граница фотоэффекта). Уравнение Эйнштейна для фотоэффекта : Е = hf - Aвых, где Е - максимальная кинетич. энергия эл-нов после вылета, Авых - работа выхода электрона, f - частота падающего света.
.Постулаты Бора. Опыт Франка и Герца.
Постулаты Бора : 1.электроны могут находится на стационарных орбитах, на которых они не излучают. 2. В стациоенарном состоянии атома электрон квантованные значения момента импульса L = mvR; 3. При переходе с одной орбиты на другую электрон излучает/поглощает енергию.
Гипотеза де Бройля. Опыт Девисона. Опыт Фабриканта.
В 1924 г. Бройль выдвинул гипотезу, что дуализм не является особенностью одних только оптических явлений, но имеет универсальное значение. Допускается, что частицы наряду с курпускулярными св-ми имеют также и волновые, де Бройль перенес на случай частиц в-ва те же правила перехода от одной картины к другой, какие справедливы в случае света. По идее де Бройля, движение электрона или какой-либо другой частицы связано с волновым процессом, длина волны к-рого равна h/mv, m - масса частицы, v - ее скорость, h - постоянная Планка. Гипотеза подтвердилась опытами Девисона и Фабриканта. Девисон исследовал отражение электронов от монокристалла никеля. Узкий пучок моноэнергетических эл-нов направлялся на поверхность монористалла, сошлифованною перпендикулярно к большой диагонали кристалл. решетки. Отраженные электроны улавливались цилиндрическим электродом, присоед. к гальванометру. Интенсивность отраженного пучка оценивалась по силе тока, при этом варьировались скорость электронов и угол падения. Опыт Фабриканта - дифракция эл-на (пропускали по одиночке через прибор, промежуток времени между двумя последовательными прохождениями эл-нов через кристалл примерно в 30 000 раз превосходил время, затраченное на прохождение эл-ном на прохождение всего прибора).
Частица в потенциальной яме : квантование энергии.
Потенциальной ямой называется область пространства, в которой потенциальная энергия U частицы меньше некоторого значения Umax. Движение коллективизированных эл-нов в атоме рассматривается в классической электронной теории как движение в потенциальной яме, причем вне металла потенциальная энергия эл-на равна нулю, а внутри металла она отрицательна и численно равна работе выхода эл-на. Физические в-ны, которые могут принимать лишь определенные дискретные значения, называются квантованными. Собственные значения энергии W частицы в одномерной потенциальной яме бесконечной глубины : W = n2h2/2mL2, где n=(1,2,..). Квантованные значения Wn называются уровнями энергии, а числа n - квантовыми числами.
Частица в потенциальной яме : вероятность нахождения.
Описывается стационарным уравнением Шредингера для частицы в потенциальной яме - Вероятность найти частицу вне потенциальной ямы равна нулю.
Туннельный эффект.
Туннельным эффектом называется прохождение частиц сквозь потенциальные барьеры(поле сил, действующих на частицу). Туннельный эффект является квантомеханическим эффектом, связанным с тем, что частицы обладают волновыми св-вами. Прозрачностью D потенциального барьера назыв. величина : D = Iпрох/Iпад, Iпрох - интенсивность волны де Бройля, прошедшей сквозь барьер, Iпад - падающей на барьер.
Атом водорода в квантов. механике
Результаты кантовой механики можно применить к отдельному атому водорода
а также для водородопод. систем.
Силовое поле отд. атома явл-ся центростремит. поэтому ур-ие Шрёдингера решать в сфер. системе координат.
Квантовые числа: 1) Главное (n=1,2….) характеризует уровни энергии электрона
2) Побочное (l=0,1,2,3…(n-1)) квантует модуль орбит. момента имп. электрона:
3) Магнитное (mE=
С орб. моментом связан орб. магн. момент:
Если заданы n, l, me, то возм. 1 такое сос.
Если заданы n и l, то (2l+1) состояний
Если задано n, то n2
Главное квантовое число записывают заглавной арабской цифрой. Орбитальное- малыми лат. буквами.
Магнитное- правй верхний числовой инд
| | | | |
Квантовая физикаштейн предложил,что энергия это рассеяние является упругимU=n /mr =…=(ze2/4ПЕо
)(1/Св-ва волновой функции:
передаётся и поглощается тагже т.е.выполняется закон сохране/n)=U1 /nгде U1=e2/4ПEoh= 1)Это комплексная функция ко-
1.Тепловое излучение-излуч.элеквантами
ктромаг.волн с поверхности на-ргия кванта где h=6,625 10-34Дж=
гретого тела(Т>0 ) =>все тела с =>
нагретые. приведённая постоян.Планка
Св-ва:1.Тепл.излуч.материално Формула Планка тона=2,426 10-12м. Эффект= _ mz2e4 4)Это однозначная конечная и
(обладает энергией и массой) 2. f(w,T)=(