Т,°С | 0 | -5 | -10 | -15 | -20 |
L’, кДж/кг | 334 | 308 | 285 | 262 | 241 |
Теплоемкость пресноводного льда с = (2.12 ± 0,0078Т) Дж/г*К. Поверхностная энергия (количество работы, необходимой для создания единицы площади поверхности раздела фаз в изотермическом процессе) равна 33 ± 3 МДж/м2.
Снег, лежащий на поверхности льда, влияет на взаимодействие судов с ледяным покровом. Приведем некоторые механические свойства снега. Плотность свежевыпавшего снега рсл=60
Рис. 3. Прочность снега на сжатие, срез, растяжение и изгиб.
На рисунке 3 приведены результаты определения пределов прочности снега на срез σср, сжатие σсж, изгиб σu и растяжение σp при температуре -10°С [36].
1.2. Выбор наиболее вероятных физико-механических характеристик ледяного покрова
Проведенные исследования позволяют выбрать численные значения параметров, характеризующих прочностные свойства льда: модуль упругости (модуль Юнга), модуль упругости при изгибе, коэффициент Пуассона, пределы прочности льда при изгибе и плотность льда в составе ледяного покрова. Однако значение этих величин сильно разнятся. Это можно объяснить использованием различных методик проведения экспериментов, влиянием масштабного а, несовершенством используемого оборудования, значительной зависимостью свойств льда от условий приготовления экспериментальных образцов, характера ледостава, химического состава воды, структуры и др.
Для оценки влияния физико-механических характеристик льда на НДС ледяного покрова вначале рассмотрим реально возможные диапазоны изменения интересующих параметров.
1.2.1. Плотность льда.
Плотность льда в значительной степени определяется структурой льда. Например, для столбчато-гранулированного льда рл=900 кг/м3, а для зернистого полукристаллического рл=850 кг/м3. Возможные диапазоны изменения плотности льда лежат в пределах рл=800
Плотность морского льда незначительно отличается от пресноводного, так приводятся возможные диапазоны этой величины pл=830
Как видно из анализа величина плотности льда довольно стабильна и для морского льда лежит в пределах 840
1.2.2. Коэффициент Пуассона
Коэффициент Пуассона μ характеризует отношение относительной поперечной к относительной продольной деформации и влияет на величину цилиндрической жесткости ледяной пластины D, т.е. на НДС ледяного покрова. Коэффициент Пуассона, так же как и плотность льда, изменяется в пределах узкого диапазона. Так, μ колеблется в пределах 0,31
T,°с | μ | T,°С | μ |
-1 | 0,368 | -25 | 0,358 |
-10 | 0,362 | -50 | 0,358 |
Таб. 3. Коэффициент Пуассона для дистиллированной воды.
Коэффициент Пуассона соленого льда практически не отличается от речного. По рекомендации лаборатории ледотермики ВНИИГа им. В.Е. Веденеева для льда Финского залива, как для изотропного тела, можно принять μ = 0,4 при толщине льда 0,3м < h < 1,0 м [36]. Можно рекомендовать для пресноводного льда μ =0,42
М.И. Сериков [37] с помощью резонансного метода нашел, что μ пресноводного льда для диапазона температур от 0 до -31°С равно 0,414
К.Ф. Войтковский [24] приводит значения коэффициента Пуассона для пресноводного льда, определенные Б.П. Вейнбергом, Б.Д. Карташкиным и Б.А., Савельевым, изменяющиеся от 0,23 до 0,47 (наиболее вероятные значения 0,34
Таким образом, зависимость коэффициента Пуассона от температуры, солености и др. факторов мало заметна. Объясняется это, по-видимому, тем, что μ характеризует отношение величин деформации, каждая из которых меняется одинаково в зависимости от ледовых условий.
Для теоретических исследований диапазон изменения μ может быть принят 0,30
1.2.3. Модуль упругости (модуль Юнга)
Модуль упругости Е характеризует сопротивляемость льда упругой деформации при растяжении или сжатии и линейно связан с цилиндрической жесткостью D ледяной пластины:
Величина модуля определяет глубину и кривизну первоначальной чаши прогиба ледяного покрова при действии статической нагрузки, а значит, влияет не только на амплитуду ИГВ, возбуждаемых движущейся нагрузкой, но и на интенсивность развития волнообразования в неустановившихся режимах.
Модуль упругости сильно зависит от режима нагружения. В связи с этим принято различать статический ( ЕСT) и динамический ( ЕД ) модули упругости. При динамическом нагружении упругие свойства льда уменьшаются, т.е. модуль упругости возрастает. В работе В.П.Берденникова [15] отмечается зависимость Е от температуры окружающего воздуха: