в данном случае может быть сколь угодно большим. Таким образом, в объединенном алгоритме число ложных отметок, принимаемых на начальные точки новых траекторий, определяется по формуле
Если критерий подтверждения имеет вид
т. е. меньше, чем для случая раздельной реализации, так как число начальных точек уменьшилось. Соответственно уменьшится и число ложных траекторий, находящихся на сопровождении.
АЛГОРИТМЫ ФИЛЬТРАЦИИИ ЭКСТРАПОЛЯЦИИ ПАРАМЕТРОВ ТРАЕКТОРИЙ ЦЕЛЕЙ ПО ДАННЫМ РАДИОЛОКАЦИОННЫХ ИЗМЕРЕНИЙ
Представление фильтруемого процесса
Модель траектории цели. При решении задач фильтрации принципиальное значение имеет способ представления процесса изменения фильтруемых параметров цели во времени. В нашем случае это соответствует выбору модели траектории цели. В задачах вторичной обработки радиолокационной информации с учетом дискретности процесса измерения координат цели и возмущений модель траектории можно задать системой линейных разностных уравнений, которая в векторной форме записывается в виде
При полиномиальном представлении независимых координат цели прогнозирование параметров невозмущенной траектории, например по координате дальности r(t), производится по формулам:
При записи выражений (4.2) в векторно-матричномвиде
Выражения для невозмущенных параметров траектории по другим независимым координатам записывается аналогично. Во втором слагаемом уравнения модели (4.1) в первую очередь должны быть учтены возмущения, обусловленные неоднородностью среды, в которой движется цель; атмосферными явлениями, а также неточностью и инерционностью системы управления и стабилизации параметров цели в полете. Назовем их шумом управления. Обычно шум управления представляется как дискретный
белый шум с математическим ожиданием, равным нулю, и корреляционной матрицей
где
Кроме шумов управления в модели траектории необходимо учитывать специфические возмущения, обусловленные непредвиденными для наблюдателя изменениями параметров траектории, которые обусловлены маневром цели. Эти возмущения назовем шумом маневрирования. В общем случае шум маневрирования не является ни белым, ни гауссовским. Один из возможных примеров представления плотности распределения вероятности ускорения (интенсивности маневра) самолета по одной из координат приведен на рис. 4.1, где Ро — вероятность отсутствия маневра, Pi — вероятность маневра с максимальным ускорением
Равновероятность промежуточных значений интенсивности маневра можно обосновать, например, тем, что проекция интенсивности маневра самолета по курсу (наиболее частый случай маневра) на произвольное направление принимает любое знамение в пределах
Поскольку выполнение маневра обычно требует значительного времени (во всяком случае большего, чем интервал времени
Последующие значения интенсивности маневра могут быть выражены через предыдущие:
где
В практике проектирования и исследования систем обработки радиолокационной информации условно считают, что множество целей можно разделить на неманеврирующие и маневрирующие. Цель считается неманеврирующей, если она движется по прямой с постоянной скоростью (с точностью до влияния интенсивности шума управления), во всех других случаях — маневрирующей. Например, для
аэродинамических объектов в качестве основной принимается модель неманеврирующей цели, каждая из независимых координат которой описывается полиномом первой степени. Однако такая классификация имеет смысл только если в процессе обработки радиолокационной информации фильтруемые параметры представлены в декартовой системе координат. Если же фильтруемые параметры представлены в полярной (сферической) системе координат, то они изменяются нелинейно и при прямолинейном
и равномерном движении ноли. В этом случае для представления независимых координат должны быть использованы по крайней мере полиномы второй степени. Модель процесса измерения. При решении задач фильтрации кроме модели траектории необходимо задать связи между m-мерным вектором измеряемых координат Yn и s-мерным вектором оцениваемых параметров
n-го измерения. Эта связь обычно задается линейным алгебраическим соотношением
где Н„ — известная (mXs)-мерная матрица, устанавливающая связь между наблюдаемыми координатами и оцениваемыми параметрами; ΔΥn — погрешность измерения координат. В рассматриваемом случае наблюдаемыми являются текущие координаты целей в сферической системе координат (дальность
которых РЛС в качестве измеряемой координаты может быть также радиальная скорость
Матрица
Если же по измеренным полярным координатам фильтруются параметры траектории в декартовой системе координат
Аналогично определяются элементы матрицы