Смекни!
smekni.com

Алгоритмы обнаружения и сопровождения траекторий целей по дискретным измерениям (стр. 2 из 6)

для обеспечения заданной вероятности попадания в строб истинных отметок. Вероятность попадания случайной точки в эллипсоид, подобный и расположенный подобно эллипсоидам равной вероятности, определяется из выражения

При

вероятность
близка к единице. Именно такие значения λ и необходимо выбирать при формировании эллипсоидального строба.Формирование эллипсоидальных стробов практически невозможно ни при физическом, ни при математическом стробировании. Поэтому лучшее, что можно сделать, это сформировать строб в виде описанного вокруг эллипсоида суммарных ошибок параллелепипеда, как это показано на рис. 3.2. Размеры сторон параллелепипеда равны соответственно
, а его объем определяется по формуле
;. Если учесть, что объем эллипсоида суммарных ошибок
, то получится увеличение объема строба по сравнению с оптимальным почти в два раза. Это приводит к увеличению вероятности попадания в строб ложных отметок или отметок, принадлежащих другим траекториям, и, следовательно, к ухудшению

селектирующей и разрешающей способности операции стробирования. При обработке большого числа целей в реальном масштабе времени на ЦВМ ограниченной производительности расчет размеров и ориентация сторон строба параллелепипеда (такой расчет принципиально должен проводиться в

каждом обзоре) является, как правило, неприемлемым с точки зрения загрузки ЦВМ. Тогда переходят к упрощенному варианту стробирования, смысл которого сводится к следующему. Форма строба выбирается простейшей для

задания в той системе координат, в которой осуществляется обработка информации. Для случая обработки в сферической системе координат простейший строб задается линейным размером по дальности

и двумя угловыми размерами: по азимуту
и углу места
(рис. 3.3). Эти размеры могут быть установлены заранее, исходя, из учета максимальных значений случайных и динамических ошибок по всем подлежащим обработке траекториям. Короче говоря, размеры строба выбираются в данном случае такими, чтобы в нем свободно вмещался и повертывался в любом направлении эллипсоид максимально возможных (при всех направлениях полета цели) суммарных отклонений истинных отметок от соответствующих экстраполированных точек. Это самый грубый прием стробирования. В заключение заметим, что все рассмотренные в данном пункте подходы к выбору размеров трехмерного строба в полной мере относятся и к стробированию в плоскости для привязки новых отметок в двух координатных

РЛС. Алгоритм селекции отметок по минимуму отклонения от центра строба. Рассматривается случай селекции отметок при построении траектории одиночной цели. При этом предполагается, что в стробы кроме истинных будут попадать также ложные отметки, образованные помехами, прошедшими фильтр первичной обработки. В результате анализа ситуаций в стробе возможны следующие решения.

1. При наличии в стробе нескольких отметок продолжать траектории по каждой из них, т. е. допускать размножение траекторий. Продолжения траектории по ложным отметкам из-за отсутствия подтверждений через несколько обзоров будут сброшены с сопровождения, а продолжение траектории по истинным отметкам останется. Такой способ привязки новых отметок чрезвычайно трудоемок. Кроме того, при высокой плотности ложных отметок возможно лавинообразное размножение ложных траекторий, приводящее к перегрузке запоминающих устройств вычислительных средств.

2. Выбрать в стробе одну отметку, вероятность принадлежности которой к сопровождаемой траектории наибольшая, а остальные отбросить как ложные. Такой подход целесообразен с точки зрения уменьшения трудоемкости вычислений, но требует решения задачи оптимальной селекции отметок.

Оптимизация процесса селекции отметок по отклонению от центра строба производится по критерию максимального правдоподобия, в соответствии с которым за истинную отметку надо принимать ту, для которой функция правдоподобия максимальна. При селекции в трехмерном стробе, грани которого параллельны главным полуосям эллипсоида суммарных ошибок (рис. 3.2), условие максимального правдоподобия

Следовательно, в качестве отметки для продолжения траектории надо взять ту, эллиптическое отклонение которой от центра строба минимально. Естественным упрощением рассмотренной оптимальной

операции является селекция по минимуму суммы квадратов линейных отклонений отметки от центра строба, что соответствует предположению о равенстве дисперсий

и
. Если далее предположить, что селекция производится в сферической системе координат в стробе, изображенном на рис. 3.3, то критерий отбора отметки

Качество процесса селекции отметок можно оценить вероятностью правильной селекции, т. е. вероятностью события, состоящего в том, что в очередном обзоре для продолжения траектории будет отобрана истинная отметка.

Задача вычисления вероятности правильной селекции может быть решена аналитически, если предположить, что попадание в строб ложных отметок обусловлено только влиянием помех и эти отметки распределены в зоне обзора равномерно. При селекции в двумерном прямоугольном стробе, описанном вокруг эллипса с параметром

вероятность правильной селекции вычисляется по формуле [21]

Для случая селекции в трехмерном стробе в виде параллелограмма, описанного вокруг эллипсоида суммарных ошибок (рис. 3.2), вероятность правильной селекции рассчитывается по приближенной формуле

На рис. 3.4 приведена схема алгоритма селекции отметок в двумерном стробе

минимальному линейному отклонению от его центра в полярной системе координат (блоки, не относящиеся к алгоритму селекции, изображены на рис. 3.4 штриховой линией). Последовательность операций этого алгоритма следующая.

1. По результатам обработки в предыдущем (n— 1) обзоре выбираются (рассчитываются) размеры строба на следующий (/1-й) обзор (блок 1). При выборе размеров строба учитывается информация о маневре цели и пропуске отметок.

2. Производится отбор отметок в стробе (блок 2) по формулам

и подсчитывается их число. Если в строб попала только одна отметка

, то она считается истинной и сразу подается на вход блока фильтрации и экстраполяции параметров траектории (блок 5). Если же в стробе обнаружено несколько отметок, то все они поступают в вычислительный блок (блок 3), где определяются квадраты расстояний каждой отметки от центра строба по формуле

3. Сравниваются квадраты расстояний (блок 4) и выбирается одна отметка, для которой

4. Если в стробе не обнаружено ни одной отметки, то проверяется критерий сброса траектории с сопровождения (блок 6). При выполнении критерия сброса траектория снимается с сопровождения. Если же критерий сброса не выполняется, то выдается команда на продолжение траектории путем экстраполяции ее координат и параметров. В заключение отметим, что кроме отклонений от центра строба для селекции отметок могут быть использованы признаки «веса» отметок, которые формируются в процессе первичной обработки информации как некоторый аналог отношения сигнал-помеха. В простейшем случае обработки

двоично-квантованных сигналов пачечной структуры для формирования признака веса отметки можно использовать число импульсов в пачке или ширину пачки. Признаки веса отметок могут использоваться в процессе селекции совместно с признаком отклонения от центра строба или самостоятельно. Один из возможных вариантов совместного использования признаков веса и отклонения отметок от центра строба состоит в следующем. Все отметки, попавшие в строб, разделяются на отметки с весом

и отметки. С весом
в Зависимости от того, Превышает Или нет ширина пачки некоторое пороговое значение, зависящее от дальности цели. При наличии отметок с весом р: в качестве истинной принимается ближайшая к центру строба отметка этой группы. При отсутствии отметок с весом
выбирается ближайшая к центру строба отметка с весом
. Если характеризовать веса отметок непосредственно