Так как, в результате расчетов, минимальный порядок оказался равным 4,04, то полученное значение округляется до большего ближайшего целого числа, т.е. nч =5.
Выберем схему ФНЧ-прототипа, которая определяется на основании принятого значения nч в соответствии с рисунком П. 2.5 [1]. Схема ФНЧ-прототипа представлена на рисунке 1.2.
Рис. 1.2. Схема ФНЧ – прототипа для расчёта
Выпишем нормированные значения емкостей, индуктивностей, а также значения нулей и полюсов затухания фильтра в зависимости от Dа, а0 и ¦кn из таблицы П. 2.6 [1]: L1= 1,144; L3=1,972; L5=1,144; C2=1,372; C4=1,372.
Рассчитаем истинные значения индуктивностей и емкостей для схемы ФНЧ-прототипа по следующим формулам:
и (2)Тогда подставив нормированные значения ёмкостей и индуктивностей в (2) получим:
, , , , .Истинные частоты значений нулей и полюсов ослабления с учетом граничной частоты полосы пропускания
рассчитаем по следующим выражениям: , (3)Согласно [1] нормированные значения частот нулей ослабления для ФВЧ Чебышева составляют:
, .Тогда согласно выражений (3) истинные значения равны:
; ;При переходе от схемы ФНЧ-прототипа к ФВЧ необходимо в схеме ФНЧ индуктивности Liпреобразовать в емкости Сi’ , а емкости Сiв индуктивности Liпо следующим формулам:
, . (4)Подставив численные значения в (4) получим:
Схема ФВЧ пятого порядка в общем случае имеет вид представленный на рисунке 1.3.
Рис. 1.3. Схема рассчитанного фильтра высоких частот
Каждому истинному значению частоты нулей ФНЧ-прототипа ¦фнч соответствует частота ФВЧ ¦фвч. Связь между ними выражается следующей формулой:
.Рассчитаем характерные частоты ФВЧ:,
, ,на основании проведенного расчета частот построим характеристику фильтра высоких частот Чебышева ( рис 1.4 ).
Так как рассчитанные емкости конденсатора отличаются от ГОСТ, Осуществим подбор номиналов конденсаторов для получения рассчитанных емкостей конденсаторов:
C1 = 4790 пФ = 4700 пФ + 82 пФ + 7,5 пФ;
С3 = 2770 пФ = 2700 пФ + 68 пФ + 2 пФ;
С5 = 4790 пФ = 4700 пФ + 82 пФ + 7,5 пФ.
Рис. 1.4 Характеристика затухания рассчитанного фильтра высоких частот
Для проверки правильности проведенных расчетов проведем моделирование фильтра в среде ЕlektronicsWorkbench, версия 5.12. Полученная в результате характеристика затухания фильтра приведена на рисунке 1.5
Данный фильтр применяется для выделения или подавления определенных колебаний, разделения каналов, формирования спектра сигналов. Фильтр входит в состав многоканальных и радиорелейных систем передачи, измерительной аппаратуры, в каскады радиопередатчиков и радиоприемников.
В соответствии с истинными значениями катушек индуктивности и емкостей схема ФВЧ Чебышева имеет вид, представленный в приложении 1.1. Спецификация для рассчитанной схемы – в приложении 1.2.
Рис. 1.5 Характеристика затухания рассчитанного фильтра высоких частот
В данном разделе произведен расчет ПФ, предназначенного для аппаратуры уплотнения специального типа.
Рассчитанный фильтр должен удовлетворять следующим требованиям:
- затухание фильтра в полосе пропускания не должно превышать заданной неравномерности затухания Dа;
- в полосе задержания затухание должно быть не меньше гарантированного затухания а0.
Неравномерность затухания и гарантированное затухание определяют количество элементов, число звеньев схемы, причем данные величины должны быть обеспечены при любых обстоятельствах.
Требования к частотной зависимости затухания ПФ Баттерворта:
- Границы полосы пропускания фильтра: ¦-х = 31 кГц, ¦х = 42 кГц;
- Границы полосы задержания фильтра: ¦-к = 28,1 кГц,
=44,9 кГц- Неравномерность характеристики затухания в ПП: Dа=1,55 дБ;
- Гарантированное затухание в полосе задержки: ао = 19,575 дБ;
- Сопротивление генератора и нагрузки: Rг = Rн = 350 Ом.
Требования к частотной зависимости затухания этого фильтра изображены на рисунке 2.1:
Расчет ПФ Баттерворта производится на основе расчета ФНЧ-прототипа, для которого производится пересчет частот, при этом порядок расчета следующий:
1) пересчет требований, сформулированных к ПФ, в требования к ФНЧ-прототипу;
2) расчет ФНЧ-прототипа;
Рис 2.1. Требования к характеристике затухания полосового фильтра3) пересчет параметров элементов ФНЧ-прототипа в параметры ПФ;
4) выбирается схема фильтра и определяется число элементов в ней;
5) изображается схема фильтра с параметрами элементов по ГОСТ и производится контрольный расчет затухания фильтра.
Полосовые фильтры, полученные реоктансным преобразованием частоты, обладают геометрически симметричными характеристиками затухания.
Требования же, предъявляемые к реальному фильтру, могут не обладать указанной симметрией. Частоты ¦-Х , ¦Х , ¦-К считаем фиксированными, тогда
и .Требования к фильтру удовлетворяют геометрической симметрии, а именно:
.Найдем граничные частоты полосы пропускания и полосы задерживания ФНЧ-прототипа:
; .По найденным граничным частотам ¦0П и ¦КП, а также заданным Dа и а0 рассчитаем ФНЧ с характеристиками затухания Баттерворта.
Минимально возможный порядок передаточной функции рассчитывается по формуле с учетом нормированной частоты полосы задержания ФНЧ-прототипа:
; (5)Подставив в (5) численные значения рассчитаем порядок фильтра:
Таким образом, для реализации фильтра необходимо принять большее целое число, т.е. принимаем nб=7.
Выберем схему ФНЧ-прототипа, которая определяется на основании принятого значения n. Она будет иметь вид, показанный на рисунке 2.2.
Из [1] по таблице, относящейся к фильтрам нижних частот Баттерворта необходимо выписать нормированные значения емкостей и индуктивностей в зависимости от Dа, а0 и ¦КП. Эти значения выбираем для меньшего значения Dа=1,55 дБ: L1 = 0,445; L3 = 1,802; L5 =1,802; L7 = 0,445; C2 = 1,247; C4 = 2,000; C6 =1,247
Рис. 2.2 Схема ФНЧ - прототипа для расчёта
Для получения истинных значений параметров L и C фильтра необходимо определить коэффициенты денормирования KL и KC, причем, в данном случае пересчета частоты выполнять не нужно.
Коэффициент денормирования для индуктивности равен:
.Коэффициент денормирования для емкости равен:
.