РЕФЕРАТ
На тему:
"Кинематика материальной точки"
Москва, 2010
Введение
Кинематика - это раздел физики, посвящённый математическому описанию движения без анализа причин, приводящих к его возникновению или изменению. Причиной изменения или возникновения движения является сила, а сила по II-у закону Ньютона связана с массой. Поэтому для того, чтобы исключить из рассмотрения силу достаточно не рассматривать массу. При этом кроме силы из рассмотрения выпадают многие механические понятия: импульс, энергия, момент импульса. А что остаётся, то и рассматривается в кинематике. Таким образом, кинематику можно было бы назвать механикой без массы.
Самый простой объект, способный двигаться - это материальная точка: тело, размеры которого пренебрежимо малы в условиях данной физической задачи. Движением материальной точки называется смена её положения с течением времени. Поэтому первое кинематическое понятие, с которым мы сталкиваемся - это положение.
1. Вектор положения
Положение чего угодно невозможно задать само по себе. Всё находится относительно чего-то. Значит, мы должны сначала установить начало отсчёта (точку О), а это невозможно сделать по-другому, кроме как поставив туда какое-либо материальное тело (тело отсчёта). И от этого «главного» тела уже можно проводить геометрические векторы, соединяющие начало отсчёта с тем или иным положением материальной точки.
Геометрическим вектором называется направленный отрезок, соединяющий положения двух материальных точек.
Геометрический вектор, соединяющий тело отсчёта с материальной точкой, называется вектором положения материальной точки.
При задании положения материальной точки относительно тела отсчёта последнее по определению считается неподвижным. Поэтому все возможные векторы положений начинаются из одной точки и называются радиус-векторами
.Совокупность всех возможных радиус-векторов образует пространство.
Смена начала отсчёта приводит к изменению всех радиус-векторов. Каким образом? Ответ зависит от системы постулатов, которыми мы собираемся пользоваться. Классическая механика, которую мы в основном и изучаем, использует постулаты Галилея-Ньютона.
Если положение материальной точки М относительно тела отсчёта в точке О обозначить , относительно другого тела отсчёта в точке О' обозначить , а геометрический вектор, соединяющий точки О и О', обозначить
, то наблюдатель в точке О будет видеть три геометрических вектора: , и .Пусть другому наблюдателю в точке О' нет дела ни до чего, кроме материальной точки М. В дальнейшем системе отсчёта с нелюбопытным наблюдателем будет отводиться «второстепенная» роль. В противовес этому система с наблюдателем, который видит всё, будет считаться «основной». В общем, наблюдатель О' видит только один вектор . Как соотносится геометрический вектор , видимый в пространстве О' с геометрическим вектором
, видимым в пространстве О? Ответ на этот вопрос даёт первый постулат Галилея: геометрические векторы в разных системах отсчёта одинаковы. Т.е. . Тогда предыдущий рисунок можно переделать так:И правило сложения векторов по треугольнику позволяет записать соотношение между тремя векторами:
.В соответствии с этим соотношением можно находить положения в «основной» системе отсчёта, зная их во «второстепенной». Такое преобразование радиус-векторов будем называть обратным преобразованием Галилея. Соответственно, прямое преобразование позволяет находить положения во «второстепенной» системе отсчёта, зная их в «основной»:
В дальнейшем какая-либо величина в «основном» пространстве будет называться «абсолютной», во «второстепенном» пространстве - «относительной», а та, через которую они связаны, -переносной. Значит
· -«абсолютный» радиус-вектор;
· -«относительный» радиус-вектор;
·
- переносный радиус-вектор.Итак, в соответствие с первым постулатом Галилея смена начала отсчета приводит к изменению пространства, которое описывается преобразованием Галилея. Это означает, что пространство относительно.
2. Траектория движения
Используя понятие радиус-вектора, движение можно описать функциональной зависимостью
, где t- время. Поскольку положение относительно, то и движение относительно. Относительны и все понятия, связанные с ним. Первым из таких понятий мы рассмотрим траекторию.Траекторией называется совокупность положений, пройденных телом в процессе движения.
Тело не может в один и тот же момент времени находиться в разных положениях. Поэтому траектория представляет собой линию, и при этом линию непрерывную. В зависимости от формы траектории различают прямолинейное и криволинейное движение. Если криволинейная траектория лежит в одной плоскости, то движение называется плоским.
Если траектория представляет собой пространственную кривую, то в каждой точке траектории можно ввести понятие соприкасающейся плоскости.
Соприкасающейся плоскостью в какой-либо точке траектории М называется предельное положение плоскости, проходящей через три точки N, M, P этой траектории, когда точки N и P неограниченно приближаются (стремятся) к точке М.
Через три точки, не лежащие на одной прямой можно прости окружность и при том единственную. Поэтому для любой точки криволинейной траектории можно ввести понятие соприкасающейся окружности.
Соприкасающейся окружностью в какой-либо точке траектории М называется предельная окружность, проходящая через три точки N, M, P этой траектории, когда точки N и P неограниченно приближаются (стремятся) к точке М.
Центром и радиусом кривизны траектории в точке М называется центр и радиус кривизны окружности, соприкасающейся с траекторией в точке М. Очевидно, что в случае пространственной траектории соприкасающаяся окружность лежит в соприкасающейся плоскости. Прямолинейную траекторию можно считать траекторией с бесконечным радиусом кривизны.
Орт - это вектор, не обладающий физической размерностью (безразмерный), модуль которого равен единице. Любой вектор можно представить как произведение модуля на орт. Например, радиус-вектор:
Значит, орт любого вектора равен частному от деления вектора на его орт:
.Нормалью траектории
в точке М называется орт, направленный из точки М в центр кривизны траектории в точке М.Ортом касательной
в точке М называется орт, касательный к соприкасающейся окружности в точке М и направленный по движению.Ясно, что
.Перемещением называется вектор изменения положения или вектор разности между последующим положением и предыдущим:
В случае, если ни один отрезок траектории не проходился материальной точкой дважды, то путь или путевая координата S(t)- это длина траектории от точки начала движения к данному моменту времени.
Отметим две точки на траектории: M с радиусом-вектором
и N с радиусом-вектором .Тогда для перемещения
и приращения пути DS всегда справедливо: