Касательное ускорение направлено по касательной к траектории (в сторону скорости при ускоренном движении и противоположно скорости – при замедленном) и характеризует изменение величины скорости.
Нормальное ускорение направлено по нормам к траектории к центру кривизны и характеризует изменение направления скорости.
1.6 Частные случаи движения точки
По виду траектории движение делится на прямолинейное и криволинейное. При прямолинейном движении ап = 0, т.к. ρ = ∞.
По изменению величины скорости движения делится на равномерные и неравномерные.
Движение называется равномерным, если величина скорости постоянна (V=const).
Закон равномерного движения:
S=S0+Vt (1.18)
Движение называется равномерным, если величина касательного ускорения постоянна.
Т.о. равномерное движение описывается двумя формулами:
(1.19)Нормальное ускорение направлено от данной точки к оси вращения
Тема 2Простейшие движения тела
К простейшим движениям твердого тела относятся поступательное движение и вращательное движение вокруг неподвижной оси.
2.1 Поступательное движение твердого тела
Поступательным называется такое движение тела, при котором любой отрезок прямой проведенной в теле перемещается параллельно самому себе.
Это самое простое движение тела.
Оно описывается одной теоремой:
При поступательном движении тела все его точки описывают одинаковые, при наложении совпадающие траектории, и имеют одинаковые скорости и одинаковые ускорения.
Доказательство:
Проведем в теле произвольный отрезок АВ. При движении тела он остается параллельным самому себе (рис. 2.1). траектория точки А на величину АВ, т.е. они одинаковые.
Проведем из неподвижного центра О радиусы-векторы точек А и В (
), а также вектор из точки А в точку В.Очевидно, что
Продифференцируем это векторное равенство по времени, учитывая, что
. ; но , значит (2.1)дифференцируя (2.1) по времени:
, получаем: (2.2)Так как точки А и В взяты произвольно, то все выводы справедливы для всех точек тела.
Следовательно, при поступательном движении тела его можно считать точкой и пользоваться формулами кинематики точки.
2.2 Вращение тела вокруг неподвижной оси
Вращательным называется такое движение тела, при котором хотя бы две точки, принадлежащие телу или жестко с ним связанные, во все время движения остаются неподвижными. Прямая, проходящая через эти две неподвижные точки называется осью вращения.
Проведем через ось вращения две полуплоскости: неподвижную І и подвижную II, жестко связанную с телом и вращающуюся вместе с ним (рис. 2.2).
Положением тела будет однозначно определяться углом φ между этими полуплоскостями. Угол φ называется углом поворота. Измеряется он в радианах. Положительное направление φ – против часовой стрелки, если смотреть навстречу оси Z.
Зависимость
φ = φ(t) (2.3)
называется уравнением вращательного движения.
Быстрота вращения характеризуется угловой скоростью ω. Средняя угловая скорость определяется как отношения приращения угла поворота ∆φ к промежутку времени ∆t, за который оно произошло.
Угловая скорость в данный момент времени:
(2.3)Вектор угловой скорости
направлен по оси вращения в ту сторону, чтобы, глядя навстречу ему, мы видели вращение происходящей против часовой стрелки. Изменяется ω в радиан/сек. На производстве угловую скорость измеряют в об/мин. В этом случае она обозначается буквой «п».Формула перехода:
(2.4)Изменение угловой скорости характеризуется угловым ускорением ε, которая определяется как первая производная от угловой скорости или вторая производная от угла поворота по времени:
(2.5)Направлен вектор
также по оси вращения в сторону при ускоренном и противоположном при замедленном вращении. Единица измерения – 1Рад/с2.2.3 Равномерное и равнопеременное вращение
Вращение называется равномерным, если угловая скорость постоянна, т.е. ω = const.
Закон равномерного вращения:
φ=φ0+ωt (2.6)
Вращение называется равнопеременным, если угловое ускорение постоянно, т.е. ε = const.
Но
. Разделяя переменные и интеграции находим, что (2.7)Подставив сюда
и еще раз интегрируя , получим уравнение переменного вращения: (2.8)2.4 Скорости и ускорение точек вращающегося тела
пусть за время dt тело повернулось на угол dφ, а точка М, находящаяся на расстоянии R от оси вращения, получила перемещение dS=ч* dφ (рис. 2.3).
Тогда скорость точки
(2.9)Направлен вектор скорости
по касательной к траекториям, т.е. по касательной к окружности радиуса R, центр которой лежит на оси вращения, а ее плоскость перпендикулярна оси вращения.Найдем нормальное и касательное ускорение точки:
|
Нормальное ускорение направлено от данной точки к оси вращения.
Касательное ускорение направлено по касательной к округлости, которую описывает точка и совпадает с направлением скорости при ускоренном вращении, а при немедленном – противоположно скорости.