- сигнал чтения от блока обмена с микроконтроллером;
- входные сигналы от часов реального времени.
Выходные сигналы блока:
- шины данных (времени) для блока обмена с микроконтроллером;
- выходные сигналы от часов реального времени.
2.1.7 Блок обмена с основным накопителем
Блок обмена с основным накопителем согласует интерфейсы накопителя и внутреннего интерфейса передачи информации. Блок формирует работу накопителя в специализированных режимах работы:
– передача информации из скоростной буферной памятив накопитель без участия микроконтроллера;
– предоставление микроконтроллеру доступа к ячейкам накопителя.
Входные сигналы блока:
- шины адреса от блока обмена с микроконтроллером и автомата перезаписи данных;
- шина данных от блока обмена с микроконтроллером и автомата перезаписи данных;
- сигналы управления режимом работы от блока обмена с микроконтроллером;
- сигнал чтения от блока обмена с микроконтроллером;
- сигналы записи от блока обмена с микроконтроллером и автомата перезаписи данных;
- входные сигналы от микросхем накопителя большого объема.
Выходные сигналы блока обмена:
- выходная шина данных для блока обмена с микроконтроллером;
- выходные сигналы для микросхем накопителя.
2.1.8 Микроконтроллер
Микроконтроллер является основным управляющим узлом данной системы. Он осуществляет общее управление работой разрабатываемого блока и обеспечивает связь с ПК по средствам USB интерфейса. В данной системе микроконтроллер напрямую взаимодействует только с блоком обмена с микроконтроллером.
Входные сигналы блока:
- двунаправленная шина данных;
- USB.
Выходные сигналы блока:
- шина адреса;
- сигнал чтения;
- сигнал записи;
- двунаправленная шина данных;
- USB.
2.1.9 Накопитель
Накопитель представляет собой набор микросхем Flash памяти большого объема. Данный блок напрямую взаимодействует только с блоком обмена с накопителем.
Входные сигналы блока:
- сигнал выборки;
- сигнал записи;
- сигнал чтения;
- шина адреса;
- двунаправленная шина данных.
Выходные сигналы блока:
- сигнал «Свободен/Занят»;
- двунаправленная шина данных.
Дальнейшая проработка функциональных узлов блока возможна при выбранной элементной базе, которая позволит более детально определить режимы работы всей системы.
2.2 Выбор элементной базы
Для реализации функциональной схемы проведем выбор элементной базы. На выбор элементов влияет множество факторов вот некоторые из них:
– доступность технической информации о элементах;
– доступность самих элементов в продаже в России;
– возможность применения элемента при заданных внешних условиях;
– масса – габаритные характеристики элементов;
– электрические параметры и характеристики.
Сложность узлов, описанных в функциональной схеме, заставляет переходить на элементы высокой степени интеграции, применять импортную элементную базу. Ниже представлены элементы и их характеристики, на которых остановился наш предварительный выбор.
Основным вычислителем и управляющим звеном блока является микроконтроллер. Так же необходимо чтобы он совмещал в себе функции контроллера USB интерфейса, необходимый для взаимодействия с персональным компьютером. На сегодняшний день существует целый ряд микроконтроллеров разных фирм производителей, которые удовлетворяют этим условиям. Один из наиболее известных производителей микроконтроллеров – ATMEL и микроконтроллеры серии АТ89. Это недорогие микроконтроллеры с известным ядром 8051. Реализация схемы требует минимум дополнительной привязки. Немаловажно и наличие бесплатного ассемблера, компилятора языка С, программатора и драйверов для Windows/Linux. Удобная возможность программирования процессора не по SPI, а «напрямую» по USB каналу. В данной серии есть несколько микроконтроллеров с интерфейсом USB, остановимся на АТ89С5131. В состав данного микроконтроллера входят:
– 32 Кбайт встроенной флэш-памяти с внутрисхемным программированием через USB или UART интерфейсы;
– 4 Кбайт EEPROMдля загрузочного сектора (3 Кбайт) и данных (1 Кбайт);
– 1 Кбайт встроенного расширенного ОЗУ;
– USB 1.1 и USB 2.0 FS модуль с прерыванием на завершение передачи.
Микроконтроллер AT89C5131 содержит специальный аппаратный модуль, который позволяет ему обеспечить обмен данными по USB интерфейсу. Структурная схема USB модуля микроконтроллера АТ89С5131 приведена на рисунке 2.2. Для работы данного модуля необходимы опорные синхроимпульсы с частотой 48 МГц, которые вырабатываются контроллером синхронизации. Эти синхроимпульсы используются для формирования 12 МГц тактовых импульсов из принятого дифференциального потока данных на высокой скорости, соответствующей требованиям к USB устройствам.
Рисунок 2.2 – Структурная схема USB модуля микроконтроллера АТ89С5131
Микросхема RTC4543 является микросхемой часов реального времени. Данная микросхема имеет способность сохранять данные в очень широком диапазоне напряжений, кроме того, в неактивном режиме имеет крайне малое энергопотребление, что позволяет применять для поддержания их работоспособности батареи малых габаритов. Микросхема часов обладает следующими характеристиками:
– точность работы часов (макс.) – 1 мин/мес. при температуре 25 °С;
– температурный рабочий диапазон – от минус 40 до +85 °С;
– время доступа к данным памяти – от 70 нс;
– напряжение питания – от 2,5 до 5,5 В;
– коррекция хода календаря на 100 лет;
– автоматическая коррекция високосного года.
В качестве скоростной буферной памяти будет использована микросхема IDT71V424S15YI, которая представляет собой высокоскоростное статическое ОЗУ организованное 512 к × 8 бит. Она произведена по фирменной высокопроизводительной и очень надежной технологии фирмы Integrated Device Technology (IDT). В неактивном режиме имеет низкое энергопотребление. Основные характеристики микросхемы:
– минимальная длительность сигнала записи – 15 нс;
– время выборки адреса – не более 12 нс;
– напряжение питания 3,3 В;
– время перехода в активный/неактивный режим – 6 нс;
– температурный диапазон хранения данных – от минус 55 до +125 °С.
Цифровая часть системы выполнена на базе ПЛИС. Это удобная в освоении и применении элементная база, альтернативы которой в данном случае не существует. Последние годы характеризуются резким ростом плотности упаковки элементов на кристалле и резким падением цен на ПЛИС, что позволило широко применять ПЛИС в системах обработки сигналов. Высокое быстродействие и упаковка на кристалле достаточного объёма памяти однозначно определили выбор ПЛИС.
В разработанной системе применена микросхема ПЛИС EPF10K30AQI240-3 фирмы AlteraCorporation семейства FLEX 10KA. Такой выбор обусловлен тем, что семейство FLEX10KA является наиболее доступным. Только это семейство имеет градацию скорости 3, которая удовлетворяет необходимым требованиям. Выбранная ПЛИС имеет 6 встроенных блоков памяти емкостью 2048 бит, корпус TQFP-240 коммерческого исполнения. Напряжение питания микросхемы EPF10K30AQI240-3 составляет +3,3 В. Данная микросхема обеспечивает достаточное быстродействие и обладают необходимым для системы регистрации данных объемом встроенных блоков памяти ЕАВ. Микросхемы EPF10K30AQI240-3 поддерживает программирование и реконфигурирование в системе, это означает, что программирование проходит в составе системы без использования программатора на смонтированной плате, причем программирование ПЛИС или конфигурационного ПЗУ может производиться многократно. Программирование производится по стандартному JTAG интерфейсу (используется стандарт IEEEStd. 1149.1-1990). Для программирования и загрузки конфигурации ПЛИС используется кабель ByteBlasterMV.
Так как выбранная микросхема ПЛИС выполнена по технологии SRAM, требующей загрузки конфигурации при включении питания, в системе необходимо использовать конфигурационное ПЗУ. В качестве конфигурационного ПЗУ была выбрана микросхема EPC2TI32, которая, так же как и ПЛИС, поддерживает программирование в системе по стандарту JTAG.
Основной накопитель выполнен на базе микросхемы ФЛЭШ K9K49G08U0M емкостью 4 Гбит с резервом емкостью 128 Мбит организованы как 512 М × 8 бит. Технология И-НЕ обеспечивает наилучшее соотношение «цена-качество» на рынке полупроводниковых запоминающих устройств. Операция записи страницы объемом 2112 байт может быть выполнена за 200 мкс. Операция стирания блока объемом 128 Кбайт может быть выполнена за 2 мс. Данные со страницы данных могут быть прочитаны циклами по 30 нс на байт. Выводы I/O служат как двунаправленный порт для ввода команд, адреса и ввода/вывода данных. Внутренний контроллер записи автоматизирует все функции записи и стирания, включая частоту повторения импульсов там, где это необходимо, а также внутреннюю верификацию и ограничение данных. Даже интенсивно записывающие системы могут воспользоваться преимуществами расширенной достоверности 100 Kциклов записи/стирания K9K4G08U0M, обеспечивая ЕСС (код исправления ошибок) по алгоритму отображения в реальном времени. Микросхемы K9K4G08U0M являются оптимальным решением для применения в разрабатываемой системе регистрации данных в качестве твердотельного накопителя большого объема памяти.
Микросхема K9K4G08U0M – это память объемом 4224 Мбит, организованная как 262144 строки (страницы) по 2112×8 столбцов. Запасные 64 столбца находятся по адресам начатая с 2048 по 2111. 2112-ти байтовый регистр данных и 2112-ти байтовый кэш-регистр последовательно соединен с остальными. Эти последовательно соединенные регистры соединены с массивом ячеек памяти, для согласования передачи данных между I/O буферами и ячейками памяти при операции чтения или записи страницы. Массив памяти складывается из 32-х ячеек, последовательно соединенных для формирования И-НЕ структуры. Каждая из 32 ячеек находятся на различных страницах. Блок состоит из 2 строк с И-НЕ структурой. И-НЕ структура состоит из 32 ячеек. Всего в блоке 1081344 И-НЕ ячеек. Операции чтения и записи выполняются постранично, тогда, как операция стирания выполняется поблочно. Массив памяти состоит из 4096 отдельно стираемых блоков объемом 128 Кбайт. Структура микросхемы K9K4G08U0M приведена на рисунке 2.3.