Смекни!
smekni.com

Расчет конструкции силового кабеля на напряжение (стр. 3 из 15)

Несмотря на то, что кабельные линии широко используются уже на протяжении половины века, только сейчас современные технологии проектирования и производства позволяют стать им эффективной альтернативой воздушных линий электропередач.

Отличительными возможностями высоковольтные кабельные линий являются:

Гибкость при проектировании систем энергоснабжения

Подземные кабели обладают уникальными свойствами по передаче энергии – они невидимы на поверхности земли и не требуют глубокого закапывания, не излучают электрических полей и могут быть спроектированы, так чтобы не излучать магнитные поля, имеют улучшенные характеристики по потери мощности, высокую стойкость при аварийных нагрузках. В результате подземные кабели можно использовать в местах плотной застройки, реках и сложных геологических условиях, местах, где требуется сохранения окружающей среды, ландшафтов, значимых строений, памятников искусства, местах зарезервированных для будущего строительства и т.п.

Высокая рентабельность

Основным сдерживающим фактором использования подземных кабелей в прошлом была их высокая стоимость. Сегодня себестоимость их производства значительно снизилась за счет применения новых технологий и увеличения производительности оборудования, что приблизило стоимость подземных кабельных сетей к стоимости воздушных линий электропередач. Это означает, что проектировщики систем электроснабжения все чаще будут останавливать свой выбор на подземных кабельных сетях как на экономически выгодном и технологически эффективном средстве создания энергетической системы города.

Особенно необходимо подчеркнуть, что подземные кабельные сети не только снижают визуальное воздействие, но и значительно сокращают стоимость обслуживания по сравнению с воздушными линиями. Они так же менее восприимчивы к тяжелым погодным условиям таким как: штормы, землетрясения. В дополнение скажем, что подземные кабели содержат большое количество меди, наиболее токопроводящего металла, в результате чего на 30% снижаются потери при высоких нагрузках по сравнению с воздушными линиями электропередач, а следовательно повышается рентабельность всей энергосистемы.

Повышенная надежность

Современные кабельные сети используют поперечно сшитый полиэтилен (XLPE) в качестве основного изоляционного материала, который уже 20 лет подтверждает свою высокую надежность.

Снижение потерь мощности (энергосбережение)

Подземные высоковольтные кабели используют в качестве проводника более эффективные медные сплавы, которые работают при более низких температурах. Сочетание этих особенностей позволяют снабжать электроэнергией потребителей с максимальной эффективностью, что особенно важно в целях сохранения окружающей среды и экономии энергоресурсов.

Продвинутые технологии монтажа

Новые технологии сочленения участков кабеля и прокладки его в грунте позволяют реализовывать проекты создания энергетических систем в течение нескольких месяцев притом что раньше на это уходили годы. В тех местах, где невозможно прокапать кабельную траншею или канал, кабели монтируются в туннелях. В некоторых случаях использование существующих туннелей позволяет значительно снизить стоимость работ.


Возможность мониторинга состояния кабеля

Для сокращения времени аварийного отключения, операторы энергетических систем могут измерять температуру высоковольтного кабеля по всей его длине с шагом пол метра с помощью оптического волокна вмонтированного в наружную оболочку кабеля. Такой мониторинг позволяет управлять общей нагрузкой всей сети, оптимально перераспределяя её между линиями не допуская перегрузок. В случае повреждения кабеля вследствие перегрузки или внешнего воздействия система мониторинга с точностью до метра определит место повреждения, что значительно сократит время на устранение аварии.

Интеллектуальная система мониторинга высоковольтных кабельных сетей ПТС-1000 позволяет решить три основных проблемы эксплуатации подземных кабелей из сшитого полиэтилена, которые в значительной степени определяют его срок службы в связи с технологическими особенностями конструкционных материалов:

1. Превышал ли кабель свою нормальную рабочую температуру если да то, как долго и в каком месте?

2. Превышал ли кабель свою максимально допустимую температуру если да то, как долго и в каком месте?

3. Предсказывать допустимую нагрузку, в случае если кабель достигнет своей максимальной расчетной температуры?

Обладая этой информацией, эксплуатирующая организация может оперативно определять остаточный срок службы высоковольтного кабеля, а, следовательно, более эффективно управлять своими капиталовложениями [2].

Современная кабельная изоляция

ЗАО «АББ Москабель» идет в ногу со временем и использует в производстве кабелей только лучшие материалы ведущих мировых производителей.

В своей работе компания уделяет много внимания развитию и совершенствованию технологий, которые обеспечивают высокое качество выпускаемых изделий. Именно поэтому для изоляции кабелей среднего и высокого напряжения она использует лишь пероксидосшиваемые полиэтилены – триингостойкий (ТСПЭ) и сополимерный (ССПЭ), что гарантирует отличные эксплуатационные характеристики продукции АББ Москабель.

Технология создания кабельной изоляции из сшитого полиэтилена появилась в 70-х годах 20 века. Сшивка – создание пространственной решетки за счет образования продольно-поперечных связей между макромолекулами полимера – увеличивает жесткость изоляции при повышенных температурах. В процессе старения (деструкции) сшитого полиэтилена его эксплуатационные характеристики снижаются. Основная причина этого – водные триинги – повреждения полимера, развивающиеся на технологических дефектах изоляции при совместном действии электрического поля и влаги, диффундирующей из окружающей среды. Вместе с влагой в изоляцию проникают агрессивные вещества. Они разрушают полимерные цепи, приводя к образованию микрополостей, которые в свою очередь служат резервуарами для накопления влаги. Под воздействием электрического поля полярные молекулы воды образуют древовидные структуры, направленные вдоль силовых линий электрического поля, – водные триинги. Различают два вида триингов: «бант» (зарождаются в объеме изоляции, заполненном водой, или на включениях инородных материалов) и «веер» (развиваются с поверхности электропроводящих экранов).

Электрическая прочность изоляции в области триингов существенно снижается, что повышает напряженность на неповрежденной части изоляции и ускоряет процесс роста триинга. С этим явлением в 70-е годы были связаны многократные отказы кабелей с изоляцией из высокомолекулярного термопластичного полиэтилена и СПЭ. Лабораторные испытания прояснили механизм его образования и развития в изоляционных материалах, что позволило подобрать новые добавки, обеспечивающие высокую устойчивость сшитых полиэтиленов к образованию водных триингов.

а) б)

Рис. 1. Водный триинг а) типа «веер» с каналом пробоя б) типа «бант»

Современные изоляционные материалы

В настоящее время существуют две концепции снижения негативного влияния водных триингов на свойства изоляции:

· согласно первой в полиэтилен вводятся специальные химические добавки, в итоге получается триингостойкий сшитый полиэтилен – ТСПЭ;

· в соответствии со второй создаются макромолекулы, в состав которых, помимо этилена, входит более 5% других химических соединений, в итоге получается сополимерный сшитый полиэтилен – ССПЭ (механическая смесь полиэтилена низкой плотности, сополимера – этилена и этилакрилата или бутилакрилата и антиоксиданта, снижающего скорость окислительных процессов).

ТСПЭ применяется с 1983 года. В течение 23 лет лабораторные испытания подтверждают его устойчивость к электрическому старению в присутствии влаги. В частности, длина триингов в ТСПЭ почти в 2 раза ниже, а степень их разветвленности значительно меньше, чем в гомополимере. Так, в рамках испытательной программы на наружную поверхность кабелей с защитной оболочкой воздействие оказывала вода при температурном режиме, сопоставимом с реальными условиями их эксплуатации. В течение пятилетнего старения кабеля с изоляцией из пероксидосшиваемого ТСПЭ не было зарегистрировано ни одного отказа, у СПЭ-кабелей наблюдалось около 10% отказов, а у кабелей с изоляцией из этиленпропиленовой резины (ЭПР) зафиксировано около 55% отказов.

В ходе ускоренных испытаний на стойкость к развитию триингов, проведенных в Северной Америке по методике Ассоциации осветительных компаний имени Эдисона, ТСПЭ подтвердил свои характеристики. Главное преимущество изоляции из ТСПЭ – это незначительное по сравнению с изоляцией СПЭ снижение электрических характеристик во времени. Электрическая прочность изоляции из СПЭ за год испытаний на старение снижается на 60%, а изоляции из пероксидосшиваемого ТСПЭ за год старения снижается только на 30%. За последние годы были проведены два исследования, в которых кабели, выведенные из эксплуатации, использовались для получения информации об их электрических характеристиках. Несмотря на то, что условия прокладки несколько отличались, результаты подтверждают высокую стабильность материалов в процессе эксплуатации (табл. 1). В 2004 году в материалах выставки «Wire. China» («Проволока. Китай») были опубликованы результаты испытания кабелей на старение, подтверждающие устойчивое сохранение электрической прочности и меньшее количество триингов типа «бант» у ТСПЭ-изоляции в сравнении со СПЭ-изоляцией (рис. 1). Причем на срок службы кабеля влияют качество производства и опыт производителя (рис. 2).