Воспользуемся теперь граничными условиями (29) и (30):
Приравнивая коэффициенты при одинаковых полиномах Лежандра, получаем
Из этих уравнений находим
Все остальные коэффициенты равны нуля, если
Таким образом, решение задачи имеет вид:
Используя формулу
С помощью вектора поляризации формулы (30) можно записать в виде:
где
Первые два слагаемых в (31) и (32) представляют собой потенциал однородного внешнего поля, создаваемого внешними источниками. Вторые – это потенциал электрического поля, создаваемого электрическим шаром, поляризованным внешним полем. Вне сферы – это потенциал диполя с дипольным моментом
Полная напряжённость внутри шара
Таким образом, электрическое поле внутри шара не зависят от радиуса шара и ослаблено на значение поля
5. Приложение.
1. Формула Остроградского – Гаусса.
Пусть f (x, y, z) - некоторая функция , а S - замкнутая поверхность, ограничивающая объём V. На отрезке 1-2 (рис. 4), параллельном оси X, f - является функцией одного аргумента x. Интегрируя вдоль этого отрезка получим:
где
Построим теперь бесконечно узкий цилиндр, одной из образующих которого является отрезок 1 2. Пусть dσ - площадь поперечного сечения его (величина положительная). Умножая предыдущее соотношение на dσ. Так как dσdx есть элементарный объём dV, заштрихованный на рисунке, то в результате получится:
где dV – часть объёма V, вырезаемого из него поверхность цилиндра. Пусть dS1 и dS2 эле -ментарные площадки, вырезаемые тем же цилиндром на поверхности S, а
единичные нормали к ним, проведенные наружу от поверхности S. Тогда:
dσ = d
а поэтому:
или короче:
Интеграл справа распространён по всему объёму V, справа – по поверхности S, ограничивающей этот объём. Аналогичные соотношения можно написать для осей Y и Z.
Возьмём теперь произвольный вектор
и аналогично для компонент Ay и Az . Складывая эти соотношения, найдём:
или:
Эту формулу Остроградского – Гаусса можно также записать в виде:
Смысл её заключается в том, что полный поток вектора через некоторую поверхность S равен суммарной алгебраической мощности источников, порождающих векторное поле.
Если объём V бесконечно мал, то величина div
Предельный переход надо понимать в том смысле, что область V должна стягиваться в точку, т.е. размеры этой области должны беспредельно уменьшаться по всем направлениям. Эти рассуждения показывают, что величина, стоящая в правой части вышеуказанной формулы, не зависит от формы поверхности S, стягиваемой в точку. Поэтому это выражение можно принять за исходную формулировку дивергенции. Такое определение обладает преимуществом, потому что оно инвариантно, т.е. никак не связано с выбором координат.
2. Формула Стокса.
По определению ротор (вихрь) некоторого вектора
Зная ротор вектора
где
Зная, что циркуляция по некоторому контуру равна сумме циркуляций по контурам, содержащиеся в данном, можно просуммировать выражение (37) по всем