Сфера і еліпсоїд торкаються один одного в двох точках
Подвійне променезаломлення широко використовує для виготовлення поляризаторів. Розглянемо для прикладу призму Ніколя, що отримала широке практичне застосування (рис. 4).
Призму Ніколя звичайно виготовляють з прозорого кристала ісландського шпата (кальцита), що має сильне подвійне променезаломлення (
Призму розпилюють, як показано на рис. 5, у напрямі
Пучок природного світла, входячи в призму Ніколя, випробовують подвійне променезаломлення і розділяються на два пучки: звичайний і незвичайний, які лінійно поляризовані у взаємно ортогональних напрямах.
На межі з ялицевим бальзамом виконується нерівність
Незвичайний промінь, для якого
Деякі середовища володіють здатністю обертати площину поляризації.
Ці середовища називають оптично активними. Прикладами таких середовищ є деякі одноосні кристали, наприклад кварц, а також аморфні речовини, наприклад, цукор, нікотин та ін. У одноосних оптично активних кристалах поворот площини поляризації відбувається при поширенні світла вздовж оптичної осі.
Обертання площини поляризації деякою мірою аналогічне подвійному променезаломленню. Для пояснення цього зазначимо спочатку, що будь-яке лінійно поляризоване коливання можна розкласти на два кругових коливання з правим і лівим обертанням (рис. 5, а). У оптично активній речовині швидкість поширення хвилі з лівим обертанням відмінна від швидкості поширення хвилі з правим обертанням.
Тому час, необхідний кожній хвилі для проходження одного і того ж відрізка в активному середовищі, що досліджується, виявиться різним. У результаті вектори
Відмінність швидкостей хвилі в правообертаючому і лівообертаючому кристалічних речовинах пов'язано з асиметрією зовнішньої форми (відсутність центра симетрії), а у разі аморфних однорідних тіл з несиметричною будовою складних молекул активного середовища, що не мають ні центра, ні площини симетрії.
При високій щільності енергії оптичного випромінювання, яку можна забезпечити за допомогою сучасних лазерів, в ряді оптичних середовищ виникають нелінійні явища.
Спрощене якісне пояснення цих явищ полягає в наступному. Світлова хвиля, що розповсюджується в матеріальному середовищі розгойдує електрони середовища, відхилення яких від положення рівноваги у разі малої щільності енергії випромінювання пов'язане лінійною залежністю з напруженістю електричного поля хвилі. Коливальні електрони є джерелами повторних хвиль, які складаються між собою і з первинною хвилею, внаслідок чого формується сумарна світлова хвиля.
При збільшенні щільності енергії первинної хвилі лінійна залежність між відхиленням електронів і напруженістю електричного поля порушується, що призводить до того, що повторні хвилі, а отже, і сумарна хвиля містять різні кратні частоти первинної світлової хвилі. У процесі підсумовування (інтерференції) повторні хвилі можуть посилювати або послаблювати одна одну.
Умови, при яких відбувається утворення сумарної хвилі з частотами, відмінними від частоти первинної світлової хвилі, називають умовами просторового синхронізму.
Розглянемо одне з найпростіших нелінійних явищ - генерацію другої гармоніки. Нехай в нелінійному середовищі в напрямі
де
У довільних точках
де
З записаних виразів видно, що повторні хвилі після виникнення в точках
Повторні хвилі приходять в будь-яку точку
Генерацію другої гармоніки уперше спостерігали в 1961 р. при поширенні випромінювання рубінового лазера в одноосних кристалах. Для виконання умови просторового синхронізму був вибраний напрям, при якому
Особливо ефективно явище спостерігається при використанні невидимого випромінювання з
Аналогічно можна пояснити генерацію сумарних і різнистних частот. Для спостереження цих явищ в нелінійне середовище необхідно ввести дві первинні хвилі з хвильовими векторами
Можна показати, що повторні хвилі з сумарною частотою
де
При наявності дисперсії ця умова не може бути виконана в изотропних середовищах.
Однак в кристалах при певних кутах між звичайними і незвичайними променями умова просторового синхронізму виконується. Можна вивести аналогічну умову просторового синхронізму для генерації різницевої частоти