Смекни!
smekni.com

До теорій дослідів Майкельсона і Троутона-Нобля (стр. 1 из 2)

У цій праці заперечується висунуте ще дорелятивістською фізикою твердження, згідно з яким, не виявлені дослідами Майкельсона і Троутона-Нобля ефекти, які передбачає теорія, компенсуються іншими ефектами. Ставиться за мету вдосконалити теорію, узгодивши її з результатами згаданих дослідів.

Для переходів між інерційними системами відліку і із початками і теоретично існують чотири роди перетворень [1; 2] координат і часу:

(1.І)

(2.ІІ)

(3.ІІІ)

(4.ІV)

Тут і координати довільної точки у системах і ; де причому і ­– сталі швидкості руху системи і певного сигналу відносно системи а час руху; час руху сигналу відносно системи ; Римськими цифрами І, ІІ, ІІІ, ІV при нумерації формул відмічаємо, до якого з чотирьох родів перетворень ці формули належать. Рівності (3) і (4) складають перетворення Фогта (1887) і Лоренца відповідно. Просторова частина в (1) становить перетворення Галілея. Усі чотири роди перетворень забезпечують коваріантність рівняння сферичного фронту будь-яких хвиль, який поширюється зі швидкістю :

(5)

Тут коваріантність указує на узгодженість між перетвореннями координат і часу.

Обов’язковим наслідком принципу відносності є вимога інваріантності рівнянь щодо певних перетворень, які забезпечують перехід між системами і . Такі перетворення повинні бути ортогональними, або симетричними. Принцип відносності вимагає видозмінювати неінваріантні рівняння або несиметричні перетворення в такий спосіб, щоб останні набули необхідної симетрії [3, 77]. Так, первісні неортогональні лоренцівські перетворення

(6)

шляхом їх симетризації зводять до релятивістських (4) [4, 171]. З-посеред перетворень (1)-(4) тільки (4) симетричні.

Для встановлення зв’язку теоретичних положень із експериментальними фактами потрібно здійснювати перехід від чотири- до три-світу, задовольняючи при цьому вимоги принципу відносності. Так, рівняння чотири-світу (5) при фіксованому стає формою

, (7)

що описує сферу При цьому закон сферичності фронту хвиль залишився в силі. Однак перетворення Лоренца не забезпечують інваріантності закону (7). Проаналізуємо два підходи до усунення цього протиріччя, які умовно назвемо класичним і некласичним. При класичному підході відмовляються від принципу відносності в електродинаміці й намагаються обґрунтувати цю відмову за допомогою перетворень Лоренца в три-світі. При цьому, однак, визнають так званий практичний принцип відносності, згідно з яким передбачені теорією ефекти другого порядку маскуються іншими ефектами. Наприклад, вважають за можливе дослід Майкельсона трактувати як яскраве підтвердження відомого лоренцівського скорочення [5; 132]. У цій праці обирається другий, некласичний підхід. Вважається, що коректним переходом до три-світу є той, який не допускає відходу від принципу відносності, цей принцип базується як на експерименті, так і на математичній концепції інваріантів [6, 226].

Дотримуючись вимоги принципу відносності про обов’язковість забезпечення симетрії при описові явищ, будемо перетворення Лоренца в три-світі симетризувати повторно. Одержимо перетворення Галілея. Рівняння сфери (7) є інваріантом цих перетворень. Відоме у фізиці перетворення сфери (7) в сплюснутий еліпсоїд Гевісайда, здійснюване за допомогою лоренцівських координатних функцій (4), є неправильним із погляду принципу відносності. Помилковість цього перетворення відзначається і в геометрії, де воно є прикладом некоректного використання групи Лоренца [7, 41].

Будемо користуватися також перетвореннями три-світу, записаними у полярних координатах. Візьмемо Одержуємо [1; 2]:

(8.І)

(9.ІІ)

(10.ІІІ)

(11.ІV)

Тут запроваджено функції видів

Перетворення (9), (11) симетричні з точністю до відповідних абераційних підстановок [1; 2]. При сталому функції (8) і (9) описують сфери і , а функції (10) і (11) – вписані в ті сфери еліпсоїди обертання.

В апріорних теоріях дослідів Майкельсона і Троутона-Нобля будемо відшукувати інваріанти три-світу, які відповідають результатам цих дослідів.

§1. Кутові інваріанти досліду Майкельсона

Ряд фізиків, як відомо, стверджують без доведення, що дослід Майкельсона довів сталість середньої арифметичної швидкості світла при його рухах у двох протилежних напрямах уздовж плеча інтерферометра. Реальність такого твердження обумовлена помилковістю положення про універсальну абсолютність швидкості світла у вакуумі.

Запишемо релятивістську теорему додавання швидкостей, виведену із (3) або (4), для випадку руху частинки уздовж осі абсцис

(12.ІІІ, ІV)

де Як відомо [3, 68; 6, 327], релятивістське додавання швидкостей збігається з додаванням відрізків на площині швидкостей Лобачевського. Ця площина в інтерпретації Клейна є внутрішністю абсолюту (овала), який на евклідовій площині може бути колом радіуса Важливою обставиною тут є те, що точки самого абсолюту моделюють “безмежно віддалені точки”, які до площини Лобачевського не належать [6, 325]. Останнє означає, що релятивістська теорема додавання швидкостей (12) застосовна тільки у випадках, коли швидкості і менші від [6, 327], як у досліді Фізо, наприклад. Для пояснення досліду Майкельсона вона не придатна.

В апріорній теорії досліду Майкельсона визначались сумарні тривалості руху і шляхи світла “туди” і “назад”. Можна твердити, що експеримент довів сталість середніх шляху часу і швидкості при рухах в обох напрямах. При цьому:

Величини назвемо першими кутовими інваріантами досліду Майкельсона. Доведемо, що вони існують і теоретично.

Скористаємося оптичною властивістю еліпсоїда обертання, яка полягає в інваріантності суми шляхів світлового сигналу, які зображаються фокальними радіусами цієї поверхні, проведеними в точку, де відбулося дзеркальне відбивання світла. Формули (10) і (11) описують праві фокальні радіуси еліпсоїдів обертання. Лівий фокальний радіус як функція при використанні перетворень Лоренца має вигляд:

Знайдені на основі відносні швидкості дорівнюють:

(13.ІV)

Знаходимо перші кутові інваріанти:

(14.ІV)

Тут довжина плеча інтерферометра, час його проходження сигналом у системі зі швидкістю Теоретичні результати (14) узгоджуються з дослідними.

Згідно з принципом відповідності Бора, теорема додавання швидкостей (13) у випадку малих повинна ставати теоремою, котра вже підтверджена в оптиці великою кількістю дослідів першого порядку. Така теорема дійсно випливає з (13) при Маємо:

(15.ІІІ)

Із погляду перетворень третього роду (10) ці формули є точними. Теорія досліду Майкельсона, побудована за допомогою формул (15), є суперечливою: одержуються як сталі так і .

Вирази (15) також одержують при використанні радіального наближення на основі наочних уявлень, згідно з якими при додаванні швидкостей і можна не враховувати величини поперечної компоненти У такому наближенні побудована, зокрема, класична теорія Доплера [2].

Формалізми перетворень першого і другого родів для пояснення досліду Майкельсона не придатні. Справді, запишемо вираз із (8) у вигляді де

(16.І)

Відповідний час Одержуємо для і одночленні ірраціональні вирази, які для знаходження кутових інваріантів цього досліду незручні.

Другими інваріантами досліду Майкельсона можна назвати співвідношення оберненої пропорційності між відносними величинами, за допомогою яких цей дослід описується. Тут його другі інваріанти не вивчаються.

§2. Сферична симетричність потенціалу точкового

заряду, який рухається без прискорення

У відповідності з результатом досліду Троутона-Нобля доведемо, що теоретичні передбачення явища сплющення поля рухомого заряду є помилковими.

Скалярний потенціал поля рухомого заряду задовольняє рівняння Даламбера:

(17)

Розв’язок цього рівняння можна записати у вигляді:

(18)

Записи рівняння та його розв’язок для векторного потенціалу знайдемо, здійснивши в (17), (18) заміни де швидкість руху заряду. В цих формулах для потенціалів лапласіан, елемент об’єму з густинами зарядів і струму в ньому, модуль вектора, який сполучає даний елемент об’єму з точкою спостереження у момент часу а квадратними дужками охоплено величини, які потрібно брати в момент

Для виведення потенціалів Льєнара-Віхерта із загаяних потенціалів виду (18) скористаємося наочним методом Планка [8, 92; 9, 314], в якому враховується, що при русі, взагалі кажучи, об’ємного заряду зі швидкістю його внесок в інтеграли для змінюється в порівнянні з випадком нерухомого заряду. Щоб урахувати цю зміну, використовується допоміжна сфера з центром у точці і радіусом який зменшується зі швидкістю При своєму русі сферична поверхня послідовно “збирає” внески від різних перетнутих нею шарів зарядженого тіла, які визначають потенціали в точці

У випадку нерухомого тіла кількість заряду який перетинається ділянкою поверхні збиральної сфери за час дорівнює:

(19)

При русі тіла така кількість заряду буде меншою від на величину

де радіальна складова швидкості тіла в напрямі до точки для даного моменту часу. Поперечна складова згідно з наочними уявленнями, не враховується. В результаті заряд який міститься в об’ємі і дає внесок у інтеграли, визначається виразом

(20.ІІІ)

Візьмемо із (20) значення і використаємо його в інтегралах. Одержимо потенціали для випадку заряду, який рухається з довільною швидкістю. Для зарядів малих розмірів охоплені квадратними дужками величини можна вважати сталими, і тоді [9, 316]:

(21)

де

(22.ІІІ)

Формули (21), (22) визначають потенціали Льєнара-Віхерта. Вадою їх виведення було використання радіального наближення. В результаті відбувся відхід від сферичності як збиральної поверхні, покладеної в основу виведення, так і загаяних потенціалів, відхід від формалізму перетворень Галілея, інваріантом яких є рівняння сфери, і перехід до перетворень третього роду, які описують еліпсоїд обертання.