ВВЕДЕНИЕ
Единая энергосистема России – это крупнейшее в мире централизованное управляемое энергообъединение, которое занимает сегодня 4 место по производству электрической энергии. Следует отметить, что 10 лет назад единая энергосистема ССР занимала 2-ое место.
Сегодня в России 68% электроэнергии вырабатывается на тепловых электростанциях, на АЭС – 13 % и на ГРЭС – 19%. Электрические сети ЕЭС России покрывают всю обжитую территорию страны. Общая протяженность сетей напряжением 330 кВ и выше достигает 48 тыс. км. Установленная мощность эл. станций ЕЭС России в настоящее время достигает почти 200 тыс. МВт, максимум нагрузки составил в 2001 году примерно 7%.
Данная электростанция проектируется в городе Новосибирске. Проектная мощность электростанции составляет 1800 МВт. На данной электростанции установлено 6 блоков по 300 МВт каждый, тип генераторов ТГВ-300-2У3. В блоках с генераторами работают трансформаторы ТДЦ-400000/500 и ТДЦ-400000/220. Система охлаждения данных трансформаторов – масляная с дутьем и принудительной вентиляцией через воздушные охладители. Охлаждение генераторов осуществляется водородом. На данной станции имеется два распределительных устройства напряжением 500 и 220 кВ, связь между которыми осуществляется при помощи двух групп однофазных трансформаторов типа АОДЦТН-167000/500/220. Для резервного питания собственных нужд имеются два пускорезервных трансформатора собственных нужд типа ТРДНС-25000/35, подключенный к низкой стороне автотрансформаторов и ТРДНС-32000/220, подключенный к распределенному устройству 220кВ. тип рабочих трансформаторов собственных нужд ТРДНС-25000/20. Резервная магистраль собственных нужд секционируется через каждые два блока. С шин проектируемой электростанции осуществляется питание потребителей при помощи пяти воздушных линий напряжением 220 кВ. Также осуществляется связь с системой при помощи трех воздушных линий напряжением 500 кВ. К распределительному устройству 500 кВ и 220 кВ подключено по 3 блока.
1. ВЫБОР ГЕНЕРАТОРОВ
Таблица 1. Параметры генераторов
Тип генератора | Sном, МВА | P, МВт | Uном, кВ | Cosφном | Х``d | Система возбуждения | Схема соединения обмоток статора | Число выводов |
ТГВ-300-2У3 | 353 | 300 | 20 | 0,85 | 0,195 | ТН | Y | 6 |
[Л2, с. 72, Т. 2.1]
2. ВЫБОР И ОБОСНОВАНИЕ ВАРИАНТА СТРУКТУРНОЙ СХЕМЫ ПРОЕКТИРУЕМОЙ ЭЛЕКТРОСТАНЦИИ
Будущая ГРЭС будет иметь блочную структуру.
2.1 РАСЧЕТ МОЩНОСТИ НАГРУЗКИ НА ШИНАХ ПОДСТАНЦИИ(220КВ)
2.2 РАСЧЕТ ОТБОРА МОЩНОСТИ НА С. Н
Pс. н. max% = 4%; PЭС=1800 МВт; Кспр=0,875 [Л2, с. 12, Т. 1.9]
2.3 ОБОСНОВАНИЕ ВЫБОРА СТРУКТУРНОЙ СХЕМЫ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ
Определение количества линий связи с системой
PmaxЛЭП=800 МВт [Л2, с. 13, Т1.12]
Первый вариант структурной схемы
1) выбор вида схемы блока Генератор – Трансформатор (ГТ)
Выбираем для всех блоков схему ГТ типа "моноблок" с генераторным выключателями.
2) выбор связи между Распределительными Устройствами (РУ) различных напряжений
Между РУ 500 и 220 кВ выбираем автотрансформаторную связь (в соответствии с нормами технологического проектирования)
3) распределение блоков между РУ разных напряжений
На стороне высшего напряжения (ВН – 500 кВ) – 3 блока по 300 МВт.
На стороне среднего напряжения (СН – 220 кВ) – 3 блока по 300 МВт.
4) выбор схемы распределительных устройств (РУ)
Исходя из норм технологического проектирования РУ 500 и 220 кВ выполняются открытыми (ОРУ)
На РУ высшего напряжения (500кВ) находится 8 присоединений, поэтому целесообразнее принять схему 3/2 выключателя на присоединение ("полуторная").
На РУ среднего напряжения (220кВ) находится 11 присоединений, поэтому целесообразнее по нормам технологического проектирования принять схему из двух систем шин с обходной .
Второй вариант структурной схемы
1) выбор вида схемы блока Генератор – Трансформатор (ГТ)
Выбираем для всех блоков схему ГТ типа "моноблок" с генераторным выключателями.
2) выбор связи между Распределительными Устройствами (РУ) различных напряжений
Между РУ 500 и 220 кВ выбираем автотрансформаторную связь (в соответствии с нормами технологического проектирования).
3) распределение блоков между РУ разных напряжений
На стороне высшего напряжения (ВН – 500 кВ) – 4 блока по 300 МВт.
На стороне среднего напряжения (СН – 220 кВ) – 2 блока по 300 МВт.
4) выбор схемы распределительных устройств (РУ)
Исходя из норм технологического проектирования РУ 500 и 220 кВ выполняются открытыми (ОРУ)
На РУ высшего напряжения (500кВ) находится 9 присоединений, поэтому целесообразнее принять схему 3/2 выключателя на присоединение ("полуторная").
На РУ среднего напряжения (220кВ) находится 10 присоединений, поэтому целесообразно по нормам технологического проектирования принять схему из двух систем шин с обходной .
Так как на данной станции предполагается установка блоков одинаковой мощности, то существенных различий между двумя вариантами не будет.
2.4 ВЫБОР ТРАНСФОРМАТОРОВ ДЛЯ ДВУХ ВАРИАНТОВ
Так как блоки в вариантах однотипны, то выбираемые в вариантах трансформаторы будут одинаковы.
2.4.1 Выбор блочных трансформаторов
из условия Sрасчбл. тр. ≤ Sном выбираем блочные трансформаторы.
Таблица 2. Параметры блочных трансформаторов
Тип трансформатора | Sном, МВА | Uобм, кВ | Pхх, кВт | PК, кВт | Uк, % | Цена, тыс. руб. | ||||||
ВН | СН | НН | С-Н | В-Н | В-С | В-С | В-Н | С-Н | ||||
ТДЦ – 400.000/220 – 20 | 400 | 242 | - | 20 | 330 | - | 880 | - | - | 11 | - | |
ТДЦ – 400.000/500 – 20 | 400 | 525 | - | 20 | 315 | - | 790 | - | - | 13 | - |
[Л2, с. 132, Т. 3.3.]
2.4.2 Выбор трансформаторов связи (ТС)
1) режим максимальных нагрузок:
I вариант
II вариант
2) режим минимальных нагрузок:
I вариант
II вариант
3) ремонтный режим (ремонт одного генератора)
I вариант
II вариант
Выбираем ТС из условия
т. е. SТС ≥ 429,9 МВА (I вариант) и
SТС ≥ 365,8 МВА (II вариант)
Для обоих вариантов принимаем одинаковые автотрансформаторы
Таблица 3. Параметры ТС
Тип автотрансформатора | Sном, МВА | Uобм, кВ | Pхх, кВт | PК, кВт | Uк, % | Sнн, МВа | ||||||
ВН | СН | НН | С-Н | В-Н | В-С | В-С | В-Н | С-Н | ||||
3*АОДЦТН - 167.000/500/220 | 167 | 500 | 220 | 38,5 | 105 | 325 | 95 | 80 | 9,5 | 29 | 17,5 | 50 |
[Л2, с. 118, Т. 3.10.]
2.5 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ СРАВНЕНИЕ ДВУХ ВАРИАНТОВ СТРУКТУРНЫХ СХЕМ
2.5.1 Расчет потерь в блочных трансформаторах
Т=8760 - tр =8760 – 600 = 8160 ч.
τ = 4500 ч. [Л1, с. 396, рис. 5.6.]
I вариант
Для трансформаторов Т1-Т3:
Для трансформаторов Т4-Т6:
II вариант
Для трансформаторов Т1-Т4:
I вариант
II вариант
2.5.3 Расчет суммарных потерь электрической энергии во всех трансформаторах по вариантам