1. Прямолинейное распространение света.
Свет распространяется прямолинейно, если нет преград в виде непрозрачных перегородок или, если ему не приходится распространяться сквозь малое отверстие. Факт прямолинейного распространения света можно доказать, пользуясь принципом Гюйгенса-Френеля. Согласно этому принципу, световая волна, возбуждаемая каким-либо источником S, может быть представлена как результат суперпозиции когерентных вторичных волн, излучаемых псевдоисточниками. Такими источниками могут служить бесконечно малые элементы любой замкнутой поверхности, охватывающей источник S. Обычно в качестве такой поверхности выбирают одну из волновых поверхностей, поэтому все псевдоисточники действуют синфазно.
Найдём в произвольной точке Mамплитуду световой волны, распространяющейся в однородной среде из точечного источника S. Согласно принципу Гюйгенса-Френеля, заменим действие источника S действием воображаемых псевдоисточников, расположенных на вспомогательной поверхности F, являющейся поверхностью фронта волны, исходящей из S (поверхность сферы с центром S). Френель разбил волновую поверхность F на кольцевые зоны такого размера, чтобы расстояния от краёв зоны до точки M отличались на l/2, т.е. P1M - PoM = P2M - P1M = P3M - P2M =…= l/2. Подобное разбиение фронта волны можно выполнить, проведя сферические поверхности с центром в точке M. Радиусы этих вспомогательных поверхностей будут: b +
2. Дифракция Френеля на круглом отверстии.
Представим себе, что сферическая волна, распространяющаяся от точечного источника S, встречает на своём пути непрозрачную перегородку с круглым отверстием. Дифракционную картину можно наблюдать на экране, который параллелен плоскости перегородки и находится от неё на расстоянииb. Разобьём открытую часть волновой поверхности F на зоны Френеля. Если в отверстии помещается нечётное число зон Френеля, то амплитуда (интенсивность света) в точке B будет больше, чем при свободном распространении волны; если чётное, то амплитуда будет равна нулю. Если отверстие открывает одну зону Френеля, то в точке B амплитуда А = А1, т.е. вдвое больше, чем в отсутствие непрозрачной перегородки с отверстием. Интенсивность же света больше в четыре раза! Если отверстие открывает две зоны Френеля, то их действие в точке B практически уничтожат друг друга вследствие интерференции. Таким образом, дифракционная картина от небольшого круглого отверстия вблизи точки B будет иметь вид чередующихся тёмных и светлых колец с центром в точке В. Причём, если m - чётное (число зон Френеля, поместившихся в отверстии), то в центре будет тёмное пятно, а если m - нечётное, то светлое пятно.
3. Дифракция Френеля на диске.
Предположим, что сферическая волна встречает на своём пути диск. Дифракционную картину наблюдаем на экране. От источника S проводим прямую линию, проходящую через центр диска и соединяющую S и точку В на экране. В данном случае закрытый диском участок волнового фронта необходимо исключить из рассмотрения и зоны Френеля строить, начиная с краёв диска. Пусть диск закрывает mпервых зон Френеля. Тогда амплитуда результирующего колебания в точке В равна:
A = Am+1 - Am+2 + Am+3 - Am+4 … = Am+1/2 + (Am+1/2 - Am+2 + Am+3/2) + … илиA = Am+1/2, таккаквыражения, стоящиевскобкахравнынулю. Следовательно, в точке В всегда (!) наблюдается интерференционный максимум (светлое пятно), соответствующий половине действия первой открытой зоны Френеля. Центральный максимум окружён концентрическими тёмными и светлыми кольцами. Интенсивность света убывает от центра к краям. Если увеличивать размер диска, то пятно в центре будет уменьшаться и совсем исчезнет (станет неразличимым).
§ 12. Спираль Корню.
1. Сначала рассмотрим распределение интенсивности в дифракционной картине от одной щели. Причём рассмотрение это будем проводить при помощи фазовых диаграмм. Разделим щель на N очень узких полос, которые будут являться псевдоисточниками световых волн. Пусть ширина полос Dy гораздо меньше длины волны монохроматического света, падающего на щель. Разность фаз для соседних полос:
Db =
Полная амплитуда на экране, отвечающая произвольному углу q, равна сумме волн из всех полос Dy; все элементарные волны имеют одинаковую амплитудуeo, но различаются по фазе. Чтобы получить полную амплитуду воспользуемся фазовой диаграммой. В центре экрана, когда Db = 0, поскольку sinq = 0, все волны оказываются в одной фазе, поэтому стрелки (векторы), соответствующие амплитудам ео, выстраиваются в прямую линию:
| |
их сумма и будет общей амплитудой при q = 0, E = N×eo. Пусть угол q не будет равен нулю, но будет небольшим. Тогда фазовая диаграмма будет выглядеть следующим образом:
b = N×Db = 2p/l×N×Dy×sinq = 2p/l×D×sinq, где D = N×Dy - полная ширина щели. Хотя дуга имеет длину N×eo = Eo, амплитуда же представляет собой векторную сумму амплитуд элементарных волн и, поэтому равна хорде. Понятно, что Eq < Eo. Если мы будем увеличивать угол q, то мы рано или поздно приходим к случаю, когда элементарные векторы, соответствующие волнам, исходящим от полос Dy, при сложении образуют замкнутую окружность и, следовательно, сумма их будет равна нулю! Это соответствует первому минимуму. Db×N = 2p = N(2p/l×Dy×sinq) или 1 = (N/l)×Dy×sinq, или sinq = l/D.(условие первого минимума). При ещё больших углах q цепочка стрелок ещё больше закручивается на угол, превышающий 360°.
2. Пусть на пути световой волны расположена полуплоскость с прямолинейным краем. Пусть на расстоянии b за полуплоскостью расположен параллельный ей экран. Вблизи края полуплоскости опустим перпендикуляр на экран, в точку P. Разобьём волновую поверхность вблизи края полуплоскости на зоны, которые будут иметь вид очень узких прямоугольных полос, параллельных краю полуплоскости. Ширину зон выберем так, чтобы расстояния от точки P до краёв любой зоны отличались на одинаковую величину D. При этом условии колебания, создаваемые в точке P соседними зонами, будут отличаться по фазе на постоянную величину. Зонам, расположенным справа от точки P, припишем номера 1,2,3 и т.д. (m), а расположенным слева - номера 1',2',3', и т.д. (m'). Зоны с номерами mи m' имеют одинаковую ширину и расположены относительно точки Pсимметрично. Поэтому создаваемые ими в Pколебания совпадают по амплитуде и по фазе. Чтобы установить зависимость амплитуды от номера зоны m, оценим площади зон. Из рис. видно, что суммарная ширина первых mзон равна:
d1 + d2 + d3 +…+ dm =
Поскольку D<<b, то квадратичным членом под корнем можно пренебречь и тогда:
d1 + d2 + d3+…+ dm =
Если m = 1, то d1=