Смекни!
smekni.com

Электричество и магнетизм (стр. 22 из 24)

2. Поместить образец на предметный столик микроскопа.

3. Микроскоп с образцом поместить в область однородного магнитного поля катушек Гельмгольца.

4. Подать напряжение на катушки от источника постоянного тока.

5. Изменяя магнитное поле катушек наблюдать поведение микрокапельных агрегатов.

6. Пронаблюдать за поведением агрегатов при повороте образца в магнитном поле.

7. Сделать вывод и зарисовать полученную картину.

Контрольные вопросы:

1. Магнитные свойства вещества.. Теория магнетизма.

2. Теория ферромагнетизма.

3. Замкнутая и открытая доменные структуры.

4. Общие представления о магнитных жидкостях.

5. Применение магнитных жидкостей.

Литература, рекомендуемая к лабораторной работе:

1. Матвеев А.Н. Электричество и магнетизм.- М.: Высшая школа, 1983.

2. Савельев И.В. Курс общей физики. Т.2, Т. 3. – М.: Наука, 1977.

3. Калашников С.Г. Электричество. – М.: Наука, 1977.

4. Телеснин Р.В., Яковлев В.Ф. Курс физики. Электричество.-М.: Просвещение, 1970.

5. Сивухин Д.В. Общий курс физики. Т.3. Электричество.- М.: Физматлит МФТИ, 2002.

6. Зильберман Г.Е. Электричество и магнетизм. – М.: Наука, 1970.

7. Парсел Э. Курс физики Т.2 Электричество и магнетизм – М.: Наука, 1971.

8. Буравихин В.А., Шелковников В.Н., Карабанова В.П. Практикум по магнетизму. – М.: Высшая школа, 1979.

9. Руководство к лабораторным занятиям по физике. Под редакцией Л.Л. Гольдина, - М.: Наука, 1983.


ЛАБОРАТОРНАЯ РАБОТА №13

ИЗУЧЕНИЕ ЦЕПИ ПЕРЕМЕННОГО ТОКА

Цель работы:

Ознакомление с одним из методов измерения индуктивности катушки, электроёмкости конденсатора и изучение закона Ома для цепей переменного тока.

Идея эксперимента

Проверка закона Ома сводится к сравнению сопротивления участ­ка цепи,

содержащего последовательно соединенные катушку индук­тивности и

конденсатор, вычисленного по показаниям амперметра и вольтметра (Zизм=U/I) с рассчитанным по формуле

где R , L и С - величины, вычисленные при выполнении пре­дыдущих заданий.

Теоретическая часть

Переменный ток

Переменным током называется ток, гармонически изменяющийся во времени

I=I0sin(ωt+φ),

где I0 - амплитудное значение тока, φ - начальная фаза и ω -циклическая частота. При прохождении переменного тока по провод­нику в нем возникает э.д.с. самоиндукции, пропорциональная изме­нению силы тока в единицу времени

Коэффициент пропорциональности L называется индуктивностью про­водника и зависит от формы и размеров проводника, а также от магнитных свойств окружающей среды. За единицу индуктивности в СИ принимается I Гн (генри) - это индуктивность такого проводника, в котором изменение силы тока на I А за 1 секунду создаёт э.д.с. самоиндукции в I В. У линейных проводников индуктивность мала. Большой индуктивностью обладают катушки индуктивности, состоящие из большого числа витков. Сопротивление проволоки, которой намотана катушка, постоянному току называется активным (омическим) сопротивлением. При наличии этого сопротивления в цепи выделяется энергия.

Если к концам проводника с активным сопротивлением R при­ложено переменное напряжение, величина которого в каждый момент времени t определяется уравнением:

U=U0 cos ωt , (1)

где Uо - амплитудное значение напряже­ния, то в проводнике возникает переменный электрический ток, сила которого в тот же момент времени определяется по закону Ома

(2)

Ток и напряжение в этом случае изменяются синфазно, сдвиг фаз ме­жду ними равен нулю.

Индуктивность и ёмкость в цепи переменного тока

Если на участке цепи имеется катушка индуктивности L , активным сопротивле­нием которой можно пренебречь, то ток

, (3)

где I0=U0/ωL. Роль сопротивления в этом случае играет вели­чина XL=ωL, которую называют индуктивным сопротивлением. Ток через индуктивность отстаёт по фазе от приложенного напряжения на π/2.

Если участок цепи состоит из соеди­нённых последовательно активного сопро­тивления R и индуктивности L , то ток

, (4)

где

(5)

φ-сдвиг фаз между током и напряжением, и tg φ= ωL/R. .Величина

(6)

носит название полного сопротивления, так как она играет в формуле (5) ту же роль, что и активное сопротивление в законе Ома.

Если участок цепи состоит из конден­сатора, ёмкость которого С, то ток

, (7)

где

(8)

Величина XC=1/ωc (9)

называется ёмкостным сопротивлением. Как видно из (7), ток через ёмкость опережает напряжение на π/2 .

Закон Ома для переменного тока

В случае, когда в цепь включены пос­ледовательно активное сопротивление R, индуктивность L и ёмкость С, ток

,

где

(10)

(11)

Величина

(12)

является полным сопротивлением цепи. Выражение (10) носит наз­вание закона Ома для цепи переменного тока.

Во всех вышеприведённых формулах I0 и U0 - амплитудные значения тока и напряжения. Приборы, используемые в цепях пере­менного тока, обычно измеряют действующие или эффективные значе­ния тока и напряжения, которые связаны с их амплитудными зна­чениями соотношениями:

.

Очевидно, что все вышеприведённые формулы оказываются справед­ливыми и для эффективных значений тока и напряжения.

Экспериментальная часть

Измерение индуктивности катушки

Так как всякая реальная катушка в цепи переменного тока об­ладает активным сопротивлением R и индуктивным сопротивлением XL, то полное сопротивление катушки определяется формулой (6) , откуда

, (13)

где ω=2πν (для переменного тока в сети ν = 50 Гц).

1. Измерить активное сопротивление катушки R с помощью ом­метра или моста постоянного тока.

2. Для измерения полного сопротивления Z катушки собрать цепь по схеме (рис. I), подключив её к выходным клеммам переменного напряжения источника тока В-24.

Ползунок реостата установить на мак­симум сопротивления, включить источ­ник тока, подавая 10-15 В. Измерить три значения тока I и напряжения U при различных положениях движка реостата. По фор­муле Z=U/I определить три соответствующих значения Z и найти сред­нее значение <Z> .

3. По формуле (13) вычислить индуктивность L катушки, под­ставляя в неё значения R и <Z>.

4. Результаты измерений и вычислений занести в таблицу:

R, Ом

U, В

I, A Z, Ом <Z>,Ом L, Гн

Измерение ёмкости конденсатора

1. Собрать цепь по схеме (рис. 2).

2. Установить реостат на максимум сопротивления, подать пере­менное напряжение порядка 15 В. Из­меняя сопротивление реостата, изме­рить силу тока I и напряжение U для трёх различных положений движка реостата. По формуле ХC = U/I определить ёмкостное сопротивление три раза и найти среднее значение <Хс>. Затем по формуле C=1/ωXc вычис­лить ёмкость конденсатора.

3. Результаты измерений и вычислений занести в таблицу:

U, B I, A Xc, Ом <XC>, Ом С, Ф

Проверка закона Ома для цепи переменного тока

1. Приборы соединить по схеме (рис.3), подать переменное нап­ряжение порядка 15 В.

2. Измерить три значения тока I и напряжения U при разных положениях движка реостата и вычислить для каждого случая сопротивление Zизм = U/I, найти среднее значение <Zизм>.

3. Вычислить по формуле (12) значение Zвыч , подставляя полу­ченные ранее значения R , L и С.

4. Сравнить результаты и вычислить относительную погрешность

.

5. Результаты измерений и вычислений занести в таблицу:

U, B I, A Zизм, Ом <Zизм>, Ом Zвыч, Ом δ

Контрольные вопросы

1. Что называется переменным током?

2. В чем заключается явление самоиндукции?

3. Что называется индуктивностью, от чего она зависит, единицы ее измерения.