Смекни!
smekni.com

Электричество и магнетизм (стр. 17 из 24)

F = eυB

остается постоянной. Эта сила, будучи перпендикулярной к направлению движения, является центростремительной силой. Но движение под действием постоянной по величине центростремительной силы есть движение по окружности. Радиус r этой окружности определяется условием

2/r = eυB.

откуда

. (3)

Кругообразное движение заряженных частиц в магнитном поле обладает важной особенностью: период обращения не зависит от энергии частицы. Действительно, период обращения равен

.

Подставляя сюда вместо r его выражение (3), имеем

. (4)

Для данного типа частиц и период, и частота зависят только от индукции магнитного поля.

Выше мы предполагали, что направление начальной скорости перпендикулярно к направлению индукции магнитного поля. Пусть теперь начальная скорость частицы составляет некоторый угол a с направлением поля (рис. 3). В этом случае удобно разложить скорость u0 на две составляющие, одна из которых

параллельна полю, а другая
перпендикулярна полю. На частицу действует сила Лоренца, обусловленная составляющей un, и частица движется по окружности, лежащей в плоскости, перпендикулярной полю. Составляющая ut не вызывает появления добавочной силы, так как сила Лоренца при движении частицы параллельно полю равна нулю. Поэтому в направлении поля частица движется равномерно, со скоростью
. В результате сложения обоих движений частица будет двигаться по цилиндрической спирали, изображенной на рис. 3. Шаг винта этой спирали

.

Подставляя вместо Т его выражение (4) , имеем

(5)

Рассмотрим случай, когда углы α невелики ( cosα≈1). В этих условиях можно записать

. (6)

Таким образом, путь, пройденный электроном в магнитном поле за один оборот, не зависит от угла α (для малых углов). Из этого следует, что все электроны, вышедшие из одной точки под небольшими, но разными углами к магнитному полю, после одного оборота вновь соберутся в одной точке (сфокусируются). Положение фокуса меняется при изменении величины магнитной индукции В. Для осуществления эксперимента электроны разгоняются в электрическом поле с разностью потенциалов U и приобретают кинетическую энергию

2/2 = eU (7)

Из формул 6 и 7 можно найти соотношение для определения удельного заряда электрона:

e/m = 8π2U/h2B2 (8)

Магнетрон.

Магнетрон представляет собой двуэлектродную лампу, содержащую накаливаемый катод и холодный анод и помещаемую во внешнее магнитное поле. Это поле создается либо катушками с током, либо электромагнитом, между полюсами которого помещается магнетрон.

На практике применяют цилиндрические магнетроны. Их анод представляет собой металлический цилиндр, а катод имеет также цилиндрическую форму и расположен на оси анода. Пути электронов в цилиндрическом магнетроне имеют сложную форму; они изображены на рис 4. Для каждого данного напряжения U между катодом и

анодом существует некоторое критическое значение магнитной индукции Вк,при котором траектории электронов как раз касаются поверхности анода. Если В<Вк, то все электроны доходят до анода и ток через магнетрон имеет то же значение, что и без магнитного поля. Если же В>Вк ,то ни один электрон не достигает анода и ток через лампу равен нулю. Соответствующий расчет показывает, что критическое значение магнитной индукции в цилиндрическом магнетроне определяется выражением

, ( 9)

где a- радиус катода, b- радиус анода. Отметим также, что значение Bк не изменяется под действием пространственного заряда и имеет одно и тоже значение как в режиме насыщения, так и в режиме пространственного заряда.

Подобные измерения приводят к тем же значениям e/m для термоэлектронов, что и найденные по методу магнитной фокусировки, а также другими способами.

До сих пор мы предполагали, что все электроны покидают катод с начальной скоростью равной нулю. В этом случае при В<Bкр все электроны, без исключения, попадали бы на анод, а при В>Вкр все они не достигали бы анода. Анодный ток Iа c увеличением магнитного поля изменился бы так, как это показано на рис. 5 штриховой линией.

На самом деле электроны, испускаемые нагретым катодом, обладают различными скоростями. Критические условия достигаются для различных электронов при различных значениях В. Кривая зависимости Iа=f(B) приобретает вследствие этого вид сплошной линии на рис. 5 Кроме того, невозможно обеспечить полную коаксиальность анода и катода, в реальных условиях вектор индукции магнитного поля несколько наклонён по отношению к катоду.

Если магнитное поле создаётся с помощью соленоида, то индукция магнитного поля В пропорциональна току соленоида I. В этом случае определяют зависимость анодного тока лампы Iа от тока соленоида I и строят график Iа=f(I), который называется сбросовой характеристикой. По этому графику, аналогичному изображённому на рис.5, определяют критический ток Iкр, а затем вычисляют критическое поле Вкр .

Устройство газоразрядной трубки и принцип получения видимого электронного пучка

Газоразрядная трубка с накаливаемым катодом служит для получения видимого электронного пучка. Внутри газоразрядной трубки, имеющей форму шара, находится система электродов , называемая электронной пушкой, для получения и фокусировки потока электронов.

В электронную пушку входит накаливаемый катод К, модулятор Мод и анод А.(Рис. 6)

Эмитируемые раскалённым катодом электроны ускоряются электрическим полем и, за счёт определённой формы электрического поля между катодом, модулятором и анодом, собираются в электронный пучок.

Для получения видимого электронного пучка и дальнейшей фокусировки электронов служит водород, поступающий из водородного генератора, который находится рядом с электронной пушкой. Водородный генератор представляет собой полый цилиндр из гидрида титана, внутри которого расположена нить накала.

При обычных температурах водородный генератор поглощает большое количество водорода, а при нагревании отдаёт его обратно. В зависимости от температуры накала водородный генератор выделяет в трубку такое количество водорода, которое способствует газовой фокусировке электронов. Суть газовой фокусировки заключается в следующем: электроны, вылетевшие с катода и ускоренные электрическим полем, ионизируют атомы водорода. Образующийся положительный заряд ионов за счёт кулоновских сил притяжения компенсирует силы отталкивания между электронами, удерживая их в узком пучке.

Для создания магнитного поля применяются катушки Гельмгольца. Они располагаются так, что электронный пучок находится в области однородности магнитного поля катушек.

Соответствующие расчеты для определения удельного заряда электрона дают формулу вида:

(10)

где

- ускоряющее напряжение на аноде.,
- радиус окружности, по которой движутся электроны, B- индукция магнитного поля.

Экспериментальные установки

1. Метод магнитной фокусировки

Установка для эксперимента смонтирована на основе осциллографа ЭО-6. Для генерирования электронов, движущихся под малыми углами к оси электронного пучка, используется электронно-лучевая трубка (ЭЛТ) с малым диаметром экрана. ЭЛТ помещается в соленоид (рис.7), который создает магнитное поле, параллельное оси ЭЛТ. Питание соленоида осуществляется от источника постоянного тока напряжением 30-50 вольт.

Клеммы соленоида выведены на переднюю панель осциллографа.

Ток соленоида устанавливается реостатом и измеряется амперметром. Индукция магнитного поля на оси соленоида определяется по формуле:

B=μ0NI/2L (cosφ1 -cosφ2), (11)

где N и L –число витков и длина соленоида соответственно, а φ1 и φ2- углы, показанные на рисунке 7. Как видно из рисунка: