Xк =
Тогда выражение (2.61) в новых обозначениях принимает вид:
Предположим, что все параметры кроме одного сохраняют свои равновесные значения (т.е. обеспечивается условие принципа Ле-Шателье). Положим для определенности, что изменяется параметр
“Нарушения” простейшей формулировки принципа Ле-Шателье наблюдаются в том случае, когда в действительности является две и более параметров. Запишем неравентсво (2.61) для двух отклоняющихся параметров:
Неравенство (2.64) в этом случае принимает вид:
С математической точки зрения (2.69) представляет собой квадратичную форму относительно ξ1 и ξ2. Как известно, оно может быть приведено к диагональному виду путем замены переменных. Обозначим
η1 = ξ1 +
Тогда (2.68) и (2.69) принимает вид:
-
Поскольку неравенство (2.69) возможно только при выполнении условий λ11 >0, λ11λ22 – λ212 >0, то достаточным условием выполнения первого неравенства (2.70) является
и
Или, что то же самое,
(
Неравенства (2.71) допускают как решения