Смекни!
smekni.com

Процесс создания линии электропередач этапы факторы и результат (стр. 1 из 8)

Содержание

Исходные данные:

Внешние нагрузки на провод

Нагрузка от собственного веса

Нагрузка от гололеда

Нагрузка от веса провода и гололеда

Нагрузка от давления ветра

Суммарные нагрузки

Понятие о критическом пролете

Подвеска провода

Расчет монтажного графика

Расчет кривой провисания нити

Опоры воздушных линий электропередачи

Фермы как опоры для высоковольтных линий электропередачи

Использованная литература

Задание на курсовую работу

Варианты на курсовую работу

Совершенно гибкая нить та, которая сопротивляется только растяжению. У идеальной гибкой нити жесткость на кручение, изгиб, сдвиг и сжатие равны нулю. Это означает, что гибкая нить может воспринимать усилия только на растяжение, при этом растягивающие усилия направлены по касательной к продольной оси нити.

На практике очень много систем, которые рассматриваются как гибкие нити. Это: воздушные линии электропередач, провода электрифицированных железных дорог, цепи висячих мостов, канатные дороги и т.д.

Рассчитать воздушную линию электропередачи, это значит обеспечить условие прочности провода s<= [s], т.е. действующие значения напряжения, возникающие в проводе под действием внешних нагрузок, не должны превышать допускаемых значений. Основными внешними факторами, изменяющими напряжения в проводе, являются: температура внешней среды и действующая на провод нагрузка. Эти параметры и вызывают различную по величине деформацию провода. Деформация и напряжение взаимосвязаны и вызываются они действием внешних сил. Изменение условий эксплуатации - это изменение внешних сил, а, следовательно, изменение деформаций и напряжений.

Наша задача: знать, как определить внешние силы и внутренние факторы - напряжение, деформацию, а также как будут изменяться эти параметры при изменении условий эксплуатации.

Для этого мы рассмотрим различные стороны этой задачи:

статическую, которая позволит определить ряд силовых параметров и форму кривой провисания нити под действием внешних нагрузок;

геометрическую, дающую возможность выяснить вопросы деформации от воздействия различных нагрузок;

физическую, - определить деформацию от температурных воздействий, а также связать во едино оба вида деформаций и получить уравнение совместной деформации.

Решить вопросы о действующем значении напряжения и связанной с ним стрелы провисания, а также установить связь этих параметров при изменении условий эксплуатации поможет уравнение состояния нити (провода).

Рассмотрим эти вопросы подробней.

В качестве гибкой нити будем рассматривать провода воздушной линии. При этом могут быть использованы однопроволочные и многопроволочные провода, скрученные из алюминиевых и стальных проволок для придания механической прочности в сочетании с высокой электропроводностью. Число проводов в фазе может быть: n = 1; n = 2; n = 3; n = 4.


Исходные данные:

Передаваемое напряжение U (кВ): 220;

Характеристика местности: населенная;

Используемый провод: АСО-700;

Температура установки провода (монтажа): t0уст = +150С;

Разноуровневая подвеска с перепадом высот "h", м: 0;

Температура гололедообразования: t0гол = - 7,50C;

Скоростной напор Q, кг/м2: 27;

Максимальная температура: t0max= +400C;

Минимальная температура: t0min = - 350C;

Расстояние между опорами, l, м: 200;

Толщина стенки льда, "с", м: 22;

1. По справочной литературе находим необходимые данные для расчетов:

а) номинальное сечение: 700 мм2;

б) число и диаметр проволок в проводе:

54´4,10 мм (алюминий)

19´2,5 мм (сталь);

в) сечение:

Fa=712 мм2

Fс=93,3 мм2

Сечение провода в целом: F=Fa+Fc=805.3 мм2;

г) расчетный диаметр провода: d=37.1 мм;

д) расчетный вес провода: G0=2.756 кг/м;

е) отношение сечений: Fa/Fc=7,67;

ж) приведенный модуль упругости: Епр=7880 кг/мм2;

з) коэффициент температурного линейного расширения провода: a=19,78×10-6 1/град;


2. Так как местность населенная и напряжение 220 кВ, то расстояние между землей и нижней частью провода составляет: h=8 м;

3. Вид сечения фазы:

4. Значение скорости ветра определяется через скоростной напор:

Vmax=

=20.785 м/с.

5. Предел прочности: s=27 кг/мм2;

[s] I=10.00 кг/мм2;

[s] II=11.35 кг/мм2;

[s] III=6.75 кг/мм2;

Выделим режимы эксплуатации:

I - Минимальная температура: tmin=-35 0C;

IIа - Максимальная нагрузка; режим наибольшего скоростного напора: Vmax=20.785 м/с; t=-5 0C, гололед отсутствует;

IIб - Режим наибольшего гололеда: V=Vmax×0.5=10.3925 м/с;

III- Режим среднегодовых температур, гололед и ветер отсутствуют; tср=-50C;

IV- Режим максимальных температур: tmax=+40 0C;

Внешние нагрузки на провод

Провода воздушных линий испытывают действие механических нагрузок, направленных по вертикали (вес провода и гололед) и по горизонтали (давление ветра), в результате чего в металле проводов возникают напряжения растяжения. На величину последних влияет также и температура окружающего воздуха, что заставляет учитывать ее в расчетах.

На практике считают, что все нагрузки в пролете между двумя опорами распределены равномерно по длине проводов и являются статическими, а отдельных порывов ветра, создающих динамический характер нагрузки, не учитывают, хотя они и возможны.

В расчет механической прочности проводов вводят понятие удельных нагрузок. Это интенсивность погонной нагрузки “q", отнесенная к площади поперечного сечения провода (нити), т.е. это нагрузка, действующая на 1 м провода и приходящаяся на 1 мм2 площади поперечного сечения.


где: q- погонная нагрузка на участке нити (провода) длиной 1 м; н/м; н/мм; кг/мм;

F- теоретическая площадь поперечного сечения провода, мм2.

Если провод рассматривается как многопроволочный, т.е. состоящий из алюминия Fa и стали Fc, то:

F = Fa + Fc

Определим удельные нагрузки на провода.

Нагрузка от собственного веса

Удельная нагрузка провода от веса провода g1:

[кг/м*мм2] или

где: G0 - вес одного метра провода, кг;

F - расчетное действительное сечение всего провода, мм2;

q1 - вес единицы длины провода.

Производим расчет:

Площадь провода в фазе: Fфазы=F×n=805.3×3=2415.9 мм2;

Диаметр фазы: dфазы= d×n =37.1×3=111.3 мм;

Вес провода фазы G=G0×n=2.756×3=8.268 кг/м;

Удельная нагрузка от собственного веса:

g1=G0/F=2.756/805.3=3.42×10-3 кг/ (м×мм2)

Нагрузка от гололеда


Считается, что все виды обледенения провода представляют собой цилиндрическую форму. Лед с объёмным весом q0 = 0.9×10-3 кг/см3. Стенка льда равномерная, толщиной “c”.

Удельная нагрузка от веса льда g2 определяется:

g2 = G / Fили q2 = g2 ×Fл

(G = q, если рассматривается вес единицы длины),

где: G- вес пустотелого цилиндра гололеда, кг;

F- поперечное сечение ледяного покрытия, мм2.

Объем гололеда на проводе длиной 1 м:

V = (p×103/4) × [ (d+2c) - d2] = p×c (d+c) ×103, [мм3]

Вес гололеда на проводе:

G = V×q0 = p×c (d+c) ×q0 = 0.00283c (d+c), [кг]

отсюда:

g2 = G / F = 0.00283× [c (d+c) /F], [кг/м×мм2]

g2=Gвес льда/F=0,00283× [с× (с+d) /F] =

=0.00283× [22× (22+37.1) /805.3] =4.57×10-3 кг/ (м×мм2)

Нагрузка от веса провода и гололеда

Эти нагрузки действуют в одной вертикальной плоскости и поэтому складываются арифметически:

g3 = g1+g2 [кг/м×мм2]

g3=g1+g2=8×10-3 кг/ (м×мм2)

Нагрузка от давления ветра

Давление ветра, направленного горизонтально под углом 90° к поверхности провода, определяется по формуле:

P = a×Cx×Q×S [кг]

где: Q = U2/16 - скоростной напор ветра, кг/м2;

U- скорость ветра, м/с;

a - коэффициент, учитывающий неравномерность скорости ветра по длине пролета, зависящий от скорости ветра или скоростного напора Q;

Cx- аэродинамический коэффициент: при d³ 20 мм ®Cx = 1.1

d< 20 мм ®Cx = 1.2, а также для всех проводов, покрытых гололедом;

S- площадь диаметрального сечения провода, м2.