Смекни!
smekni.com

Процесс создания линии электропередач этапы факторы и результат (стр. 6 из 8)

По полученным данным построим кривую провисания нити:

2) Режим максимальных температур: g=g1=3.72998×10-3 кг/ (м×мм2), s=4.76293 кг/ (мм2). Согласно этим данным, получим уравнение:


или y= 0.07831×x- 0.00039×x2

Расстояние Провес, м Расстояние Провес, м
X0 0 X11 3.87648
X1 0.74397 X12 3.75901
X2 1.40963 X13 3.56323
X3 1.99698 X14 3.28914
X4 2.50601 X15 2.93673
X5 2.93673 X16 2.50601
X6 3.28914 X17 1.99698
X7 3.56323 X18 1.40963
X8 3.75901 X19 0.74397
X9 3.87648 X20 0
X10 3.91564

f+40=3.91564 м

По полученным данным построим кривую провисания нити:


3) Режим гололеда без ветра: g=g3=0,01017 кг/ (м×мм2), s=12.77698 кг/ (мм2). Согласно этим данным, получим уравнение:

или y= 0.0796×x- 0.0004×x2

Расстояние Провес, м Расстояние Провес, м
X0 0 X11 3.93876
X1 0.75592 X12 3.8194
X2 1.43228 X13 3.62047
X3 2.02906 X14 3.34198
X4 2.54627 X15 2.98391
X5 2.98391 X16 2.54627
X6 3.34198 X17 2.02906
X7 3.62047 X18 1.43228
X8 3.8194 X19 0.75592
X9 3.93876 X20 0
X10 3.97854

f3=3.97854 м

По полученным данным построим кривую провисания нити:


4) Режим максимальных нагрузок (гололед с ветром): g=g7=0,01047 кг/ (м×мм2), s=13 кг/ (мм2). Согласно этим данным, получим уравнение:

или y= 0.08054×x- 0.0004×x2

Расстояние Провес, м Расстояние Провес, м
X0 0 X11 3.98525
X1 0.76485 X12 3.86448
X2 1.44918 X13 3.66321
X3 2.05301 X14 3.38142
X4 2.57632 X15 3.01913
X5 3.01913 X16 2.57632
X6 3.38142 X17 2.05301
X7 3.66321 X18 1.44918
X8 3.86448 X19 0.76485
X9 3.98525 X20 0
X10 4.0255

f7=4.0255 м


По полученным данным построим кривую провисания нити:

Опоры воздушных линий электропередачи

Металлические опоры воздушных линий представляют собой пространственные решетчатые конструкции, составленные из плоских ферм, соединенных между собой пространственными связями.

В данной курсовой работе для упрощения в качестве опоры будем брать пространственную ферму по форме куба или близкой к ней, с размером примерно 3 м ´ 3 м ´ 3м, а необходимую высоту опоры будем набирать из нескольких наслоений кубических ферм.

Внешний вид фермы и самой опоры:



Высоту опоры Ноп определяем приближенно как параметр, состоящий из минимально допустимого расстояния от поверхности земли до провода в точке наибольшего провисания и зависящего от передаваемого напряжения и величены максимального провеса провода в вертикальной плоскости.

Величина максимального провеса провода может возникнуть только при отсутствии ветра, когда провод находится в вертикальной плоскости, проходящей через точки его крепления.

На основе всех вышеизложенных указаний, определяем высоту опоры: 8+4,0255=12,0255 » 12 м.

Фермы как опоры для высоковольтных линий электропередачи

Фермой называется геометрически неизменяемая шарнирно-стержневая конструкция.

Если оси стержневой фермы лежат в одной плоскости, то ее называют плоской. Точки, в которых сходятся оси стержней, называются узлами фермы, а те узлы, которыми ферма опирается на основание, называются опорными узлами.


Шарнирное соединение в виде треугольника:

представляет собой геометрически неизменяемую систему, а шарнирное соединение в виде четырехугольника - геометрически неизменяемая система.



Образовать геометрически неизменяемую систему с числом стержней “C” (больше трех), можно так:



К основному треугольнику “abc” последовательно присоединяем узлы, образованные двумя стержнями, оси которых не лежат на одной прямой.

Последовательность образования узлов на рисунке показана цифрами. Это - простейшая ферма. Узлы, образованные на одной прямой, имеют мгновенную изменяемость.

Если “Y” - общее число узлов, то для образования остальных (Y-3) (кроме a, b, c) необходимо по 2 стержня, т.е.: 2 (Y-3).

Общее число стержней (с учетом ab, bc, ca) будет:

C = 3 + 2 (Y + 3) = 2Y + 3.

Это - необходимое условие для получения фермы. Перенесем эту методику образования плоской фермы для образования пространственной фермы. Геометрически неизменяемые простейшие пространственные фермы могут быть образованы следующим образом.

К исходному треугольнику a-b-c (рисунок ниже) последовательно присоединяют узлы, образованные тремя стержнями, оси которых не лежат в одной плоскости. Это - простейшая пространственная ферма.



По способу образования узлов “Y” установим число стержней “C". Для образования первых трех узлов требуется 3 стержня, для образования остальных (Y-3) узлов требуется 3 (Y-3) стержней. Итого необходимо:

[3 (Y - 3) + 3] = (3Y - 6) = C

стержней. Условием геометрической неизменяемости свободной (т.е. незакрепленной) пространственной фермы будет:

C = 3Y- 6.

Для получения неподвижности пространственной фермы необходимы еще 6 стержней, поэтому включая в число стержней и опорные, общее число стержней для геометрически неизменяемой и неподвижной фермы будет равно:

Cф = С + 6 = 3Y.

Рассмотренные выше конструкции ферм в стержнях должны испытывать только осевые усилия, вызывающие деформации растяжения или сжатия. Это конструкции, в которых изгиб полностью уничтожен, как неприемлемый вид деформации, при котором значительная часть материала изгибаемой конструкции используется слабо.

Для образования конструкции, испытывающей только осевые усилия, необходимо соблюдение следующих условий:

соединение концов отдельных стержней должно быть шарнирным, допускающим свободное вращение (без трения) каждого стержня относительно центра шарнира; оси стержней должны проходить через центр шарнира;

внешние силы должны быть приложены только в узлах;

стержни должны быть прямолинейны, в противном случае в них возникнут изгибающие моменты. На практике идеальность шарниров достичь невозможно, т.к эти конструкции работают в атмосферной среде, где присутствует дождь, снег, способствующие возникновению ржавчины, трению в шарнирах. Поэтому в реальных конструкциях стержни соединяют наглухо (заклепки, сварка). Это есть причиной появления дополнительных усилий, не направленных вдоль осей стержней. Однако эти дополнительные усилия незначительны, и там, где оно возможно, ими пренебрегают.

Одним из основных этапов в проектировании ферм является определение усилий в стержнях, позволяющих выполнять условие прочности.

Существует несколько способов определения усилий в стержнях.

Способ вырезания узлов.

Графическое решение задачи путем построения диаграммы Максвелла-Кремоны.

Способом сечений.

Самым простым и распространенным есть способ вырезания узлов, который будет рассмотрен ниже. В процессе определения усилий может оказаться, что в отдельных стержнях загруженной фермы усилия равны нулю. Такие стержни называются нулевыми.

Рассмотрим леммы, пользуясь которыми можно определить нулевые стержни, не производя ее расчета. Рассмотрим пространственную ферму как опору высоковольтной линии электропередачи

Лемма 1.

Если в ненагруженном узле фермы сходятся три стержня, не лежащих в одной плоскости, то усилия в каждом из этих стержней равны нулю.