Сравнивая (15) с (13), находим коэффициенты квадратичной формы
и проекции векторов : (16)Эти величины определяются единственным образом. Разберем смысл формул (14). Предварительно отметим, что для абсолютно твердого тела имеем
, где - скорость полюса - вектор мгновенной угловой скорости, с которой твердое тело вращается относительно мгновенной оси, проходящей через . Из (14) следует, что скорость в некоторой точке сплошной среды складывается из скорости полюса , скорости этой точки во вращательном движении затвердевшей частицы вокруг мгновенной оси, проходящей через полюс , скорости деформации . Угловая скорость вращения частицы равнаскорость деформации частицы
На основании соотношений (16) тензор
можно представить в виде суммы симметричного и антисимметричного тензоров: (17)Симметричный тензор
определяет скорости деформации частицы и называется тензором скоростей деформации. С этим тензором связана симметрическая квадратичная форма . Как и в случае тензора напряжений, существуют главные координатные оси , в которых квадратичная форма принимает простейшую формуПереход от произвольной системы координат к главным осям осуществляется невырожденным линейным преобразованием. Главные скорости деформации
находятся как корни векового уравненияИмеются три инварианта тензора скоростей деформации - линейный
, квадратичный , кубический . В частности, для линейного инварианта имеем выражения (18)Связь тензоров напряжений и скоростей деформации. Ньютоновская жидкость. Тензоры
и характеризуют напряжение и деформированное состояние в данной точке сплошной среды. Для конкретной среды должна быть определена связь между этими тензорами. В случае вязкой жидкости такая связь устанавливается законом Навье-Стокса.В основу модели вязкой жидкости положены следующие предположения:
1. в жидкости наблюдаются только нормальные напряжения, если жидкость покоится или движется как твердое тело;
2. жидкость изотропна - свойства ее одинаковы по всем направлениям;
3. компоненты тензора напряжений есть линейные функции компонент тензора скоростей деформации.
Наиболее общий вид связи между тензорами
и , удовлетворяющий этим условиям, есть (19)Здесь
- единичный тензор, и - скалярные величины. Если движение отсутствует, отсюда получаем . Это означает, что в этом случае в жидкости действительно существуют только нормальные напряжения, одинаковые в силу изотропии жидкости. Так как вязкость проявляется лишь при движении, то естественно считать, что напряженное состояние в вязкой жидкости будет таким же, как в покоящейся идеальной жидкости, - на каждой площадке будет действовать по нормали к ней гидростатическое давление . Значение выражается через первый инвариант тензора :Обобщая это соотношение, определим давление в движущейся вязкой жидкости соотношением
Равенство (19) означает, что будут равны также инварианты тензоров, стоящих в левой и правой частях. Приравниваем линейные инварианты этих тензоров, которые находим с помощью формул (12), (18):
Отсюда находим
Выразим теперь
через давление ,тогда из (19) получаем следующий закон для вязкой жидкости (М.Навье, 1843 г.; Г.Стокс, 1845 г.):
(20)Величина
называется коэффициентом динамической вязкости, а - коэффициентом второй вязкости. Коэффициент динамической вязкости характеризует внутреннее трение слоев жидкости в их отдельном движении. Смысл этого коэффициента ясно виден на простейшем примере слоистого течения , , , в котором возникает сила тренияЭто выражение для силы трения было предложено Ньютоном. На этом основании формулу (20) называют обобщенным законом вязкости Ньютона, а жидкости, удовлетворяющие этому закону, называются ньютоновскими.
Коэффициент
характеризует объемную вязкость, действие которой может проявляться только в сжимаемой жидкости.Коэффициенты
, всегда положительны, они могут быть функциями температуры, либо постоянными для данной среды. Наряду с используется коэффициент кинематической вязкости . Значения заметно отличаются от нуля только в особых случаях. В рамках классической гидродинамики эффект второй вязкости обычно не учитывается. Введем обозначение , тогда из (20) получаем следующие уравнения модели вязкой жидкости, связывающие компоненты тензоров напряжений и скоростей деформации: (21)Запишем эти уравнения в обычных обозначениях декартовых ортогональных координат:
(22)Уравнение Навье-Стокса. Если объединить уравнения движения сплошной среды
(23)с обобщенным законом Ньютона, иначе говоря, если подставить вместо тензора напряжений выражение его через тензор скоростей деформации, то получим уравнение движения, пригодное только для частного класса сред - вязких ньютоновских жидкостей. Получаемое при этом векторное уравнение называется уравнением Навье-Стокса (в скалярной форме - уравнениями Навье-Стокса).