Зная вид удельных величин:
В последнем выражении суммирование по jзаменим на суммирование по i. Тогда второе и третье слагаемые в сумме дают нуль. Тогда для потенциала Гиббса окончательно получим:
Это же соотношение может быть получено и другим способом (из (3.41) и (3.43)):
Далее рассмотрим многокомпонентную систему “под поршнем”, состояние которой описывается параметрами (
Тогда для химического потенциала каждой из компонент получим:
При выводе (3.48) выполнены преобразования, аналогичные использованным при выводе (3.42), с помощью воображаемых стенок. Параметры состояния системы образуют набор (
Роль термодинамического потенциала играет потенциал
Как видно из (3.49), единственным аддитивным параметром в данном случае является объем системы V.
Определим некоторые термодинамические параметры такой системы. Число частиц в данном случае определяется из соотношения:
Для свободной энергии F и потенциала Гиббса G можно записать:
Таким образом, соотношения для термодинамических потенциалов и параметров в случае многокомпонентных систем видоизменяются только за счет необходимости учета числа частиц (или химических потенциалов) каждой компоненты. При этом сама идея метода термодинамических потенциалов и расчетов, проводимых на его основе, остается неизменной.
4.
В качестве примера использования метода термодинамических потенциалов рассмотрим задачу химического равновесия. Найдем условия химического равновесия в смеси трех веществ, вступающих реакцию. Дополнительно предположим, что исходные продукты реакции является разреженными газами(это позволяет не учитывать межмолекулярные взаимодобывания), а в системе поддерживаются постоянные температура и давление
Условие равновесия термодинамической системы в зависимости от способа ее описания определяются максимальной энтропией системы или минимальной энергией системы (подробнее см. Базаров Термодинамика). Тогда можно получить следующие условия равновесия системы:
1. Состояние равновесия адиабатически изолированной термодинамической системы, заданной параметрами (
Второе выражение в (3.53а) характеризует устойчивость равновесного состояния.
2. Состояние равновесия изохорно-изотермической системы, заданное параметрами (
3. Равновесие изобарно-изотермической системы, задаваемой параметрами (
4. Для системы в термостате с переменным числом частиц, определенной параметрами (
Перейдем к использованию химического равновесия в нашем случае.
В общем случае уравнение химической реакции записывается в виде:
Здесь
Поскольку в качестве параметров системы выбраны давление и температура, которые положены постоянными. Удобно в качестве состояния термодинамического потенциала рассмотреть потенциал Гиббса G. Тогда условие равновесия системы будет заключаться в требовании постоянства потенциала G:
Поскольку мы рассматриваем трехкомпонентную систему, положим
Вводя химические потенциалы для каждой из компонент:
Уравнение (3.57) было впервые получено Гиббсом в 1876г. и является искомым уравнением химического равновесия. Легко заметить, сравнивая (3.57) и (3.54), что уравнение химического равновесия получается из уравнения химической реакции путем простой замены символов реагирующих веществ на их химические потенциалы. Этот прием может быть использован и при записи уравнения химического равновесия для произвольной реакции.
В общем случае решение уравнения (3.57) даже для трех компонент является достаточно загруженным . Это связанно, во-первых, с тем, что даже для однокомпонентной системы получить явные выражения для химического потенциала весьма затруднительно. Во-вторых, относительные концентрации
Физически отмеченные трудности объясняются необходимостью учета перестройки электронных оболочек атомов, вступающих в реакцию. Это приводит к определенным сложностям микроскопического описания , что сказывается и при макроскопическом подходе.
Поскольку мы условились ограничится исследованием разреженности газа, то можно воспользоваться моделью идеального газа. Будем считать, что все реагирующие компоненты являются идеальными газами, заполняющими общий объем и создающие давление p. В этом случае любым взаимодействием (кроме химических реакций) между компонентами смеси газов можно пренебречь. Это позволяет допустить, что химический потенциал i-го компонента зависит только от параметров этого же компонента.