Аристократ по рождению и учёный по призванию, знаменитый датский астроном Тихо Браге первым понял важность систематических наблюдений. Вплоть до появления телескопов Гершеля достигнутая им точность наблюдений оставалась недосягаемой.
“Все должны смолкнуть и внимать Тихо, - писал Кеплер в письме от 9/10 апреля 1599 года канцлеру Баварии Херверту фон Хоэнбургу, - который отдал 35 лет жизни наблюдениям и своими глазами видел больше, чем многие другие всей остротой своего разума. Любой его инструмент стоит больше, чем всё моё имущество и имущество всех моих родных. По сравнению с ним Птолемей, Альфонс и Коперник выглядели просто мальчишками, если бы Тихо не имел обыкновения приписывать им большую часть своих знаний и идей, послуживших толчком к его открытиям...”
Между тем у Кеплера созревал замысел нового сочинения. В письме Херварту фон Хоэнбургу от 14 декабря 1599 года Кеплер сообщал: “Мне удалось уже разработать метод и сделать первые наброски книги “О гармонии мира”. В ней будет пять частей или глав: первая, геометрическая, - о фигурах, которые можно построить с помощью циркуля и линейки; вторая, арифметическая, - о числовых пропорциях, свойственных правильным многогранникам; третья, музыкальная, - о причинах гармоний; четвертая, астрологическая, - о причинах аспектов” 4.
Кеплер посылает Тихо Браге экземпляр своей “Тайны мироздания” в надежде получить вместе с отзывом столь необходимые ему данные. Но Браге не спешил делиться накопленными сокровищами: результаты своих наблюдений он намеревался использовать для подкрепления своей собственной гео-гелиоцентрической модели мира (все планеты обращаются вокруг Солнца, которое в свою очередь обращается вокруг Земли). Раздосадованный неудачей, Кеплер пишет своему учителю, астроному в Вюртембергском университете профессору Местлину 26 февраля 1599 г.: “Вот моё мнение о Тихо. Он богат сверх меры, но, подобно большинству богачей, не знает, как распорядиться своим богатством. Необходимо поэтому взять на себя его труд (что я и сделал с подобающей деликатностью) и лишить его накопленных богатств, вынудить опубликовать без утайки наблюдения, и притом все”.
Кеплер наносит визит Браге, который к тому времени обосновался в замке Бенатек под Прагой, но неудачно. В письме Херварту фон Хоэнбургу от 12 июля 1600 г. Кеплер сообщает: “Я бы закончил свои исследования гармонии мира, если бы астрономия Тихо не захватила меня настолько, что чуть было не сошел с ума.... Одной из важнейших причин моего визита к Тихо было желание получить от него точные значения эксцентриситетов, чтобы с их помощью проверить “Тайну мироздания” и уже упоминавшуюся “Гармонию мира”, ибо априорные умозаключения должны непротиворечить очевидному, а наоборот, находиться в согласии с ним. Узнать, что-либо у Тихо мне не удалось. Лишь за обедом в застольной беседе он между прочим упоминал сегодня - апогей одной планеты, завтра - узлы другой”.
Визит в Бенатек убедил Кеплера в том, что одному Браге не под силу справиться с обработкой наблюдений. ...Тихо обладает лучшими наблюдениями и, следовательно, материалом для возведения здания, - писал Кеплер. - У него есть работники и всё необходимое. Недостает ему лишь архитектора, который использовал бы всё это в соответствии с его же, Тихо, замыслом. Ибо, сколь несчастлив ниспосланным ему даром Тихо и сколь ни искусен он в архитектуре, всё же разносторонность задач и то обстоятельство, что истина подчас бывает запрятана довольно глубоко, препятствует его успехам. К тому же начинает сказываться и возраст, ибо дух и силы его ослабевают и ослабевают через несколько лет настолько, что ему станет трудно делать всё самому”.
Став ассистентом (а затем и научным наследником) Тихо Браге, Кеплер занялся теорией Марса и был вынужден на долгие годы оставить занятия милой его сердцу гармонией мира. Но размышления над любимой темой не прекращались. О том, насколько неотступно преследовала Кеплера мысль о поиске гармонии мира, свидетельствует хотя бы признание, вырвавшееся у него в письме к Гейдону (1605): “Если бы Господь избавил меня от астрономии, дабы я мог сосредоточить все свои помыслы на работе “О гармонии мира””.
Свершиться замыслам было суждено не скоро: первый вариант “Гармонии мира” был закончен лишь 27 мая 1618 г. И хотя писал “Гармонию” не восторженный преподаватель протестантской гимназии в Граце, а зрелый учёный муж, “математик его императорского величества” Рудольфа II, открыватель двух первых законов движения планет, автор “Новой астрономии”, “Диоптики”, “Дополнений к Вителлию”, “Стереометрии винных бочек”, увлеченность его идеей гармонии мира осталась прежней.
Если в “Тайне мироздания” мы ощущаем юношескую непосредственность автора, если в “Новой астрономии” нас изумляет его тонкая интуиция, позволяющая ему находить верную дорогу сквозь лабиринт наблюдений, и бескомпромиссное следование наблюдательным данным Тихо Браге, то в “Гармонии” перед нами предстаёт Кеплер-мыслитель, занятый поисками ключа к строению Вселенной, - сверхпринципа, позволяющего единым взглядом охватить всё богатство явлений, обосновать общность всех членов Солнечной системы.
Высокая задача требовала особой тщательности изложения, и Кеплер решает следовать непогрешимому (в те времена) идеалу математической строгости -“Началам” Евклида.
Кеплер, считавший геометрию “прообразом красоты мира”, в отличие от пифагорейцев искал первопричины гармоний не в числовых соотношениях, а в скрытых за числами геометрических фигурах. Основная идея его труда - универсальный характер гармонии мира, и роль математики в познании этой гармонии отчетливо сформулирована в предпосланном первой книге эпиграфе из Прокла Диадоха, любимого античного автора Кеплера: “В изучение природы математика вносит величайший вклад тем, что позволяет обнаружить стройную систему идей, в соответствии с которыми построена Вселенная, ...и представить простые элементы, на которых зиждутся небеса, принимающие в различных частях соответствующие формы, во всём их гармоничном и соразмерном единстве”.
В своих исследованиях гармонических пропорций Кеплер во многом использовал X книгу “Начал” Евклида, дополнив евклидову теорию иррациональных чисел их классификацией по степени “представимости”. “Когда я увидел, - пишет Кеплер во введении к первой книге “Правильные фигуры, производящие гармонические пропорции”, - что истинные и подлинные различия между геометрическими фигурами, из которых я намеревался вывести причины гармонических пропорций, обычно совершенно неизвестны, что Евклид, подвергший их исследованию,... заглушен критиками высокомерных невежд и либо его никто не слушает, либо он говорит о тайнах философии глухим, что Прокл, открывшый Евклида для понимания, извлекший скрытое на свет и сумевший сделать легко понятными самые трудные места, служит предметом насмешек, а его комментарии простираются на далее десятой книги, - мне стало ясно, что делать. Свою задачу я усмотрел в том, чтобы прежде всего выписать из X книги “Начал” Евклида то, что особенно важно для задуманного мной плана, затем с помощью некоторой классификации расположить в четком порядке идеи Евклида, указать причины, по которым Евклид пренебрег тем или иным членом последовательности, и, наконец, рассмотреть сами фигуры. Поскольку при этом речь шла о вполне ясном изложении Евклида, то я довольствовался лишь тем, что приводил формулировки соответствующих теорем. Многое из того, что Евклид доказывал иначе, мне пришлось изложить заново, поскольку я преследовал определенную цель - сравнить представимые и непредставимые фигуры. Я соединял разрозненное и изменял порядок... Я не стремился к особой точности в леммах и не слишком следил за выражениями, ибо в большей мере заботился о своем предмете, выступая не как математик в философии, а как философ в этой части математики”.
Важнейшим свойством геометрических фигур Кеплер считает рациональность отношений длин их элементов и возможность построения их с помощью циркуля и линейки. Это свойство кладется в основу разделения многоугольников на представимые и непредставимые. Кеплер утверждает, что “речь идет здесь об очень важных вещах, ибо в этом и состоит причина, по которой Бог не использовал семиугольник и другие фигуры этого же рода для украшения мира в отличие от ... представимых фигур”.
Но представимых фигур бесконечно много, и не существует способа, позволяющего однозначно выбрать конечное число таких фигур, чтобы с их помощью “обосновать” гармонические пропорции.
И Кеплер пытается различать фигуры по новому свойству, которое он называет конгруэнцией (вторая книга “Гармонии мира” так и называется “Конгруэнция гармонических фигур”). Конгруэнцией Кеплер называет заполнение плоскости геометрическими фигурами или построение из плоских фигур многогранников. Рассматривая плоские конгруэнции, Кеплер одним из первых решает задачу о разбиении плоскости как на равные (конгруэнтные) фигуры, так и на фигуры различных форм и размеров. При изучении пространственных конгруэнций Кеплер открывает два звездчатых многогранника.Число конгруэнтных фигур оказалось конечным, и все они оказались представимыми.
Теперь Кеплеру предстояло извлечь из свойственных этим фигурам числовых отношений такие, которые можно было бы принять за основу гармонии. Поиском гармонических соотношений посвящена третья книга “Гармонии мира”, которая называется “Происхождение гармонических пропорций, а также природа и различие музыкальных интервалов”.
Кеплеру предстояло решить необычайно сложную задачу: не только указать основные интервалы, из которых можно построить весь звукоряд, но и вывести из их свойств геометрию представимых фигур. Проделав колоссальную вычислительную работу и по существу создав свою теорию музыки, Кеплер получает семь основных гармонических интервалов: октаву (с отношением частот 1:2), увеличенную сексту (3:5), малую сексту (5:8), чистую квинту (2:3), чистую кварту (3:4), большую терцию (4:5) и малую терцию (5:6) - и выводит из них весь звукоряд.