Смекни!
smekni.com

Лекции по Метрологии (стр. 1 из 6)

Лекция N2 15.02.02

Методы непосредственной оценки.

К методам сравнения относятся методы измерения, при которых измеряемая величина непосредственно сравнивается с мерой.

Существуют четыре метода сравнения (вида):

1 нулевой метод

2 дифференциальный

3 метод совпадения

4 метод замещения

Нулевой метод – результирующий эффект воздействия, измеряемой величины и меры на прибор сравнения доводят до нуля.

Пример:

E0 - известно

Пср - прибор сравнения

Если Пср показывает ноль, то Ex=E0

Это наиболее точный метод.

Дифференциальный – на прибор сравнения воздействует разность измеряемой величины и меры.

Пример: та же схема, но Ex=E0+DE

В этом методе точность тем больше, чем меньше DE.

Метод совпадения – о значении измеряемой величины судят по совпадению отметок или сигналов, относящихся к измеряемой величине и мере.

Метод замещения – измеряемую величину заменяют мерой. (т. е. Поочерёдно измеряют).

Пример:


Если А12, то rx=ro

В зависимости от того изменяется ли измеряемая величина или остаётся неизменённой различают статические и динамические измерения.

Статический – измерение const или установившихся значений.

Динамический – если измеряются мгновенные значения.

Ещё измерения делят на: непрерывные и дискретные. Если СИ позволяют непрерывно следить за значениями измеряемой величины, то непрерывные. Если измерения проводятся только в выбранные моменты времени, то дискретные.

Классификация средств измерений.

Опр. СИ: техническое средство, используемое при измерениях и имеющее нормированные метрологические хар-ки (т. е. Эти хар-ки обязательно известны, они заданы заранее и утверждены государством).

Виды СИ: 1 меры

2 измерительные приборы

3 измерительные преобразователи

4 измерительные информационные системы

Опр. меры – СИ предназначенные для воспроизведения физической величины заданного размера. По назначению меры делятся: образцовые (служат для проверки других мер и других СИ), рабочие – непосредственно используются в процессе измерений (методы сравнения).

Образцовые – эталоны – СИ предназначенные для воспроизведения единиц измерения. Существуют: первичные, вторичные и третичные эталоны.

Первичные эталоны должны воспроизводить единицы измерения в соответствии с определением единиц измерения в системе единиц.

Различают однозначные и многозначные меры.

Однозначная мера – воспроизводит физическую величину одного размера.

Многозначная мера – воспроизводит ряд одноимённых величин различного размера.

Измерительные приборы.

Опр. : Измерительные приборы – это СИ, предназначенные для выработки сигналов измерительной информации в форме доступной для непосредственного восприятия (в этом случае прибор должен иметь десятичную систему).

Приборы делятся на: аналоговые и цифровые.

Аналоговые – показания являются непрерывными функциями изменений измеряемых величин.

Цифровые – автоматически вырабатывающие дискретные сигналы измеряемой инфо, показания которой показаны в цифровой форме.

Различают показывающие и регистрирующие приборы.

По методу преобразования измеряемой величины в отсчёт, приборы делятся на два класса: 1 приборы прямого преобразования, 2 компенсационные приборы.

1 – Измеряемая величина непосредственно или через промежуточные преобразователи воздействует на отчётные устройства.

2 – Используется нулевой или дифференциальный методы сравнения.

Приборы прямого преобразования делятся на две группы:

1 электромеханические, 2 электроннокинетические.

В электромеханических для перемещения подвижной части (стрелки) непосредственно используется энергия эл/магн. поля.

В приборах электроннокинетических эл/магн. поле используется для управления электронным лучом (осцилограф).

Приборы делятся на: приборы постоянного тока, переменного тока, постоянного и переменного токов.

По конструкции бывают стационарные (щитовые) и переносные приборы, стационарные приборы приспособлены для жёсткого крепления на месте, переносные обычно лабораторные приборы.

По способу защиты корпусом: обыкновенные, водонепроницаемые, пыленепроницаемые, герметические, взрывобезопасные.

Измерительные преобразователи.

Опр. : СИ, предназначенные для выработки сигналов измерительной инфо в форме удобной для передачи, дальнейшего преобразования, обработки и хранения, но не поддающейся непосредственному восприятию наблюдателя.

В зависимости от характера измеряемых величин различают: преобразователи эл. величин в эл. величины, преобразователи эл. величин в не эл. . По выхходному сигналу делятся на два класса: 1 параметрический, 2 геператорый.

Выходные величины в параметрическом преобразователе являются параметры эл. цепи: R, L, C.

В геператорных – выходной величиной является ЭДС. (термопара).

Измерительные информационные системы.

Опр. : СИ, предназначенные для автоматического сбора, обработки, передачи и воспроизведения измерительной инфо от ряда источников.

В зависимости от основного назначения ИИС делятся на: измерительные системы (ИС), системы автоматического контроля (САК), системы технической диагностики (СТД), системы опознания образов (СОО).

Характеристики средств измерений.

Делятся на: метрологические и не метрологические.

Метрологические – хар-ки влияющие на точность измерений.

Не метрологические - хар-ки не влияющие на точность измерений.

Опр. : Погрешность у меры – отклонение номинального значения меры (заданного размера меры), воспроизводящего ту или иную физическую величину, от истинного значения воспроизводимой её величины.

Опр. : Погрешность приборов, преобразователей – отклонение выходного сигнала от истинного значения измеряемой величины.

Лекция N3 22.02.02

Т.к. истинное значение оказывается неизвестным, т. е. Найденным быть не может, то вместо него используют действительное.

Действительное – значение физической величины найденное экспериментальным путём и настолько приближающееся к истинному, что данной цели принято вместо него.

Иногда в качестве хар-ки СИ используют точность. Точность- степень приближения результата измерения к действительному значению измеряемой величины, т. е. Это хар-ка отражающая близость к нулю погрешности..

В зависимости от изменении во времени измеряемые величины различают статические и динамические погрешности.

Статические погрешности – погрешности при измерениях постоянных во времени величин.

Динамические погрешности – разность между погрешностью в динамическом режиме и статической погрешностью.

Пример:

В точку попасть нельзя, это и есть ди-

намическая погрешность.

Статическая погрешность- ширина

линии на осцилограмме.

В зависимости от хар-ра изменения погрешности различают: систематические погрешности, случайные погрешности.

Систематические погрешности – погрешности постоянные или закономерно изменяющиеся.

Случайные п-ти – погрешности изменяющиеся случайным образом, т. е. погрешности законы изменения которых неизвестны.

В зависимости от условия возникновения различают: основную и дополнительную погрешности.

Основная – это погрешность СИ при н. у. работы (при нормальной температуре, влажности, отсутствии магнитного поля). Дополнительная – погрешность СИ вызванная отступлением от н. у. одного из влияющих факторов.

У СИ часто выделяют аддитивные и мультипликативные погрешности.

Аддитивные - погрешности в зависимости от изменения измеряемой величины (погрешность нуля). Мультипликативная - линейно изменяется.

В реальных приборах

Усилитель напряжения


Мультипликативная погрешность

2. Вариация.

Вариация выходного сигнала измерительного преобразователя, (Показаний прибора- разность между значениями информативного параметра выходного сигнала преобразователя (или показания прибора) ), соответствующими данной точке диапазона измерения при различных направлениях медленных измерений информативного параметра входного сигнала в процессе подхода к данной точке диапазона измерений.

Пример:


Действительные значения мультипликативности окажутся

различными.

Информативный параметр сигнала – это параметр функционально связанный с измеряемым свойством или являющийся самым измеряемым свойством объекта измерения.

3. Чувствительность.

S=dy/dxS- чувствительность

y-выходная величина

x-измеримая

Для эл./мех. приборов S=da/dx=[дел]/[В,А,…]

В зависимости от F(x) меняется шкала прибора.

S=F(x)

Если F(x) постоянна, то шкала равномерная

Если F(x) непостоянна, то шкала неравномерная