Смекни!
smekni.com

Нелинейные электрические цепи в режиме постоянного тока (стр. 2 из 2)

Решим уравнение относительно тока в НЭ:

.

Это уравнение прямой

, где
.

Точка пересечения ВАХ нелинейного элемента

и уравнения прямой дает решение задачи.

Метод эквивалентного генератора

Если цепь содержит один НЭ, то применяют метод эквивалентного генератора. При этом линейная цепь относительно зажимов НЭ заменяется эквивалентным генератором напряжения или тока (рис. 1.5).

(a) (б) (в)

Рис. 1.5.

Ток в НЭ и напряжение на нем находится из системы, состоящей всего из двух уравнений. Так, применяя второй закон Кирхгофа к схеме рис. 1.5, б получаем:

.

Дописывая к данному равенству уравнение НЭ

, получаем систему из двух уравнений. Решить данную систему можно графическим путем, построив график прямой:

.

и график ВАХ

нелинейного элемента. Точка пересечения графиков дает значение тока
и напряжения
на НЭ.

Эквивалентное преобразование схем с нелинейными элементами

Суть эквивалентных преобразований состоит в замене участков цепи с параллельным или последовательным соединением ветвей одной эквивалентной ветвью путем суммирования их токов или напряжений по заданным характеристикам ветвей цепи.

Пусть два НЭ с уравнениями (ВАХ)

и
включены параллельно (рис. 1.6).

Необходимо найти уравнение НЭ, эквивалентного данному соединению элементов. Так как элементы соединены параллельно, то

, а по первому закону Кирхгофа
. Выполним сложение токов графически, как показано на рис. 1.7.

Рис. 1.6. Рис. 1.7.

Задаемся значением напряжения. При этом значении напряжения находим токи НЭ и суммируем их. Задаемся новым значением напряжения и опять суммируем токи. Таким образом, находим серию точек, соединяя которые, получаем ВАХ эквивалентного НЭ.

Рассмотрим последовательное соединение НЭ (рис. 1.8).

Рис. 1.8. Рис. 1.9.

В данном случае

, а
. Процесс определения ВАХ НЭ показан на рис. 1.9. Заметим, что рассмотренные преобразования применимы и в случае, когда последовательно или параллельно соединены несколько линейных, а также нелинейных элементов.

Поочередное применение правил эквивалентного преобразования участков с последовательным и параллельным соединением элементов позволяет постепенно "свертывать" участки цепей со смешанным соединением линейных и нелинейных сопротивлений с монотонными ВАХ.

Цепи, состоящие из линейных и нелинейных сопротивлений, можно использовать для стабилизации напряжения.

Отношение относительного приращения напряжения на входе таких цепей к относительному приращению выходного напряжения называется коэффициентом стабилизации.

.

Следует подчеркнуть, что эффект стабилизации напряжения в принципе не может иметь места в цепях, составленных из элементов с линейными ВАХ.

Вопрос к аудитории: Может ли иметь место стабилизация в линейных цепях?

Анализ цепей с четырехполюсными нелинейными элементами

Рассмотрим анализ резистивных цепей, если в их состав входят нелинейные четырехполюсники, которые описываются нелинейными уравнениями. На рис. 1.10 показана схема включения нелинейного четырехполюсника, а на рис. 1.11 – семейство его входных (а) и выходных (б) ВАХ.

Рис. 1.10.

Рис. 1.11.

По второму закону Кирхгофа для входной и выходной цепей схемы 1.10 можно записать:

и

Решая эти уравнения относительно токов

и
получаем уравнения:

и

которые называются уравнениями нагрузочных прямых.

На рис. 1.11 построены графики этих прямых и графических входных и выходных ВАХ четырехполюсного НЭ. Точки пересечения нагрузочных прямых и ВАХ определяют режимы постоянного тока (рабочие точки) на входе и выходе четырехполюсного НЭ.

Заключение

В подавляющем большинстве практических задач анализа нелинейных резистивных цепей конфигурация цепи не бывает произвольно сложной; в цепи, как правило, действует один источник переменного сигнала, и требуется определить реакцию в одной или двух ветвях. Задача анализа сводится к следующему: при заданной цепи, содержащей резистивные элементы с известными характеристиками, источники постоянного напряжения и тока и один источник переменного сигнала

, действующий на входе, определить реакцию
: напряжение или ток на входе, либо на выходе цепи. Точное аналитическое решение задачи анализа возможно только в редких случаях простейших резистивных цепей с определенными характеристиками элементов. Уравнения электрического равновесия решают приближенными численными, графическими или графо-аналитическими методами.

Литература

1. Белецкий А.Ф. Теория линейных электрических цепей. – М.: Радио и связь, 1986.

2. Бакалов В.П. и др. Теория электрических цепей. – М.: Радио и связь, 1998.

3. Качанов Н.С. и др. Линейные радиотехнические устройства. М.: Воен. издат., 1974.

4. В.П. Попов Основы теории цепей – М.: Высшая школа, 2000