Рис. 6. Электорнограмма высокого разрешения (окись цинка):
вверху ¾ электронограмма; внизу ¾ увеличенное изображение участка А.
В нашей стране и за рубежом применяются специализированные электронографы промышленного типа. Кроме того, в некоторых электронных микроскопах предусмотрена возможность работы в режиме электронографии.
Следует заметить, что с точки зрения физики получение электронограмм представляет собой процесс, во многом близкий процессу получению рентгенограмм в рентгеноструктурном анализе. Действительно, если в электрографии используется дифракция электронов, то в рентгеноструктурном анализе происходит дифракция рентгеновских лучей на атомных структурах. Естественно, что каждый из этих методов имеет свою область применения.
Особенности работы с электронным микроскопом.
Остановимся кратко на основных приемах работы в электронной микроскопии. Естественно, что эти приемы своеобразны, учитывая сверхмалые размеры объектов, подлежащих исследованию. Так, например, в биологических исследованиях находят применения «сверхтонкие ножи» - микротомы, позволяющие получать срезы биологических объектов толщиной менее 1 мкм.
Главные особенности методики электронной микроскопии определяются необходимостью помещения объекта исследования внутрь колонны электронного микроскопа, т.е. в вакуум и обеспечения условий высокой чистоты, так как малейшие загрязнения могут существенно исказить результаты. Для просвечивающего электронного микроскопа объект приготовляется в виде тонких пленок, в качестве которых могут служить различного рода лаки, пленки металлов и полупроводников, ультратонкие срезы биологических препаратов. Кроме того, объектами исследования могут быть тонко измельченные (диспергированные) совокупности частиц. Обычно в просвечивающих микроскопах, работающих при напряжениях 50-100 кв, толщина объектов не может превышать 200 А°(для неорганических веществ) и 1000 А° (для органических). Биологические объекты в большинстве случаев приходится контрастировать, т.е. «окрашивать» (солями тяжелых металлов), оттенять напылением металлов (платиной, палладием и др.) и использовать ряд других приемов. Необходимость контрастирования вызвана тем, что большинство биологических объектов содержит атомы легких элементов (с малым атомным номером) - водород, углерод, азот, кислород, фосфор и т.д. в то же время толщина объектов, интересных для биологии и медицины, составляет величину порядка 50 А°. Без контрастирования при электронно-микроскопических исследованиях вирусов наблюдаются бесструктурные пятна, а отдельные молекулы нуклеиновых кислот вообще неразличимы. Использование методов контрастирования позволяет эффективно применить электронную микроскопию в биологических исследованиях и в том числе при исследованиях больших молекул (макромолекул) ¾ см., например, рис. 7.
Рис. 7. РНК из вируса табачной мозаики (из раствора с ионной силой 0,0003 мкм).
В ряде случаев при исследовании, например, массивных объектов в технике широкое применение находит метод получения отпечатков, который заключается в изготовлении и последующем исследовании в микроскопе копий поверхностей объектов.
Используются как естественные отпечатки (тонкие слои окислов), так и искусственные, получаемые путем нанесения (напыления, осаждения) пленок кварца, углерода и других веществ. Наибольшее разрешение ( ~10 А°) позволяют получить угольные реплики, которые находят широкое применение как в технике, так и в биологии.
При наблюдении электронно-микроскопическими методами влажных объектов ( в том числе живых клеток) используются вакуумно-изолированные газовые микрокамеры. Объекты исследования помещаются в электронных микроскопах на тончайшие пленки - подложки, которые крепятся на специальных сетках, изготовляемых обычно из меди электролитическим способом. Эти пленки должны удовлетворять целому ряду требований, поскольку относительно большая толщина их, а также сильное рассеяние ими электронов приводят к резкому ухудшению качества изображения объекта. Кроме того, материал таких пленок должен обладать хорошей теплопроводностью и высокой стойкостью к электронной бомбардировке.
Кстати, об электронной бомбардировке объекта исследования и ее последствиях. При попадании электронов на объект они выделяют энергию, примерно равную кинетической энергии их движения. В результате могут происходить местный разогрев и разрушение участков объекта.
Электронный микроскоп часто используется для микрохимического анализа исследуемого вещества согласно методу, предложенному М. И. Земляновой и Ю. М. Кушниром. По существу этот метод аналогичен методу микрохимического анализа с помощью оптического микроскопа. В данном случае электронный микроскоп используется в качестве устройства, способного обнаружить малые количества искомого вещества (по форме и структуре кристаллов и т.п.). на поверхность водного раствора, в котором предполагается наличие искомых ионов, наносится капля 1 — 1,5% раствора нитроклетчатки в амилацетате. Капля растекается по поверхности жидкости и образует коллодиевую пленку, на которую наносится капля реагента. Ионы реагента проникают (диффундируют) сквозь пленку и, взаимодействуя с раствором, образуют на поверхности пленки кристаллы, которые содержат ионы, подлежащие обнаружению. После специальной очистки кусочек пленки с кристалликами помещается в электронный микроскоп, и на основе изучения этих кристалликов оказывается возможным дать ответ о наличии искомых ионов, а в ряде случаев — и об их концентрации. Такой метод микрохимического анализа характеризуется высокой чувствительностью (на 2 — 3 порядка большей по сравнению с другими способами). Например, ионы марганца могут быть обнаружены в растворе с концентрацией не ниже 10-11 нормального раствора при содержании иона 10-11 г (по данным А. М. Решетникова).
Пути преодоления дифракционного предела электронной микроскопии.
К настоящему времени электронная микроскопия достигла больших успехов и нашла многочисленные применения. Однако в ряде случаев, о которых кратко было сказано выше, было бы чрезвычайно желательным добиться дальнейшего прогресса в электронной микроскопии. Это в первую очередь относится к проблеме достижения большей разрешающей способности.
На пути решения этой краеугольной задачи стоят чрезвычайно серьезные технические трудности, связанные с проблемами создания электронных линз, их взаимного расположения формирования односкоростных электронных потоков. Совокупность этих факторов приводит в конечном итоге к различного рода искажениям, играющим важную роль при больших увеличениях и приводящим к тому, что практически достигаемое разрешение оказывается хуже предельного.
По мере приближения электронной микроскопии к своим предельным возможностям все труднее и труднее становится вносить в нее дальнейшие усовершенствования.
Самые последние достижения в электронной микроскопии основаны на применении новых высоковольтных (V = 100 кв) и сверхвысоковакуумных (вакуум 2e-10 мм рт.ст.) приборов. Высоковольтная электронная микроскопия, как показывает опыт, позволяет уменьшить хроматическую аберрацию электронных линз. В печати сообщается, например, о том, что с помощью нового японского микроскопа SMH-5 могут быть получены фотографии решеток с межплоскостным расстоянием ~1 А°. Сообщается также, что на новом электронном микроскопе с ускоряющим напряжением 750 кв получено разрешение, равное 3 А°.
Рассматриваются возможности применения в электронной микроскопии линз из сверхпроводящих сплавов (например, Hi ¾ Zn), которые позволят получить высокие оптические свойства электронных систем и исключительную стабильность полей. Ожидается, что использование специальных линз-фильтров позволит получить новые результаты в отражательной электронной микроскопии. При использовании таких линз в просвечивающем электронном микроскопе удалось существенно улучшить их разрешающую способность.
В растровых электронных микроскопах просвечивающего типа к настоящему времени достигнута разрешающая способность в 100 А°. Новый эмиссионный микроскоп позволяет получать разрешения деталей с размерами от 120 (для фотоэмиссии) до 270 А° (для вторичной эмиссии).
Вызывает интерес сообщение о том, что голландская фирма Philips вносит ряд усовершенствований в микроскоп типа EM-300, которые позволят довести практическую разрешающую способность до теоретического предела (!). Правда, о существе этих усовершенствований пока не сообщается.
Важность проблемы улучшения разрешающей способности в электронной микроскопии, приближение ее к теоретическому пределу стимулировала проведение целого ряда исследований в этой области. Из многочисленных предложений и идей, зачастую остроумных и весьма перспективных, остановимся на идеях, высказанных английским физиком Габором, получивших в последние годы широкое развитие в оптике, радиофизике, акустике, особенно в связи с созданием оптических квантовых генераторов (лазеров). Речь идет о так называемой голографии, о которой известно сейчас не только специалистам, но и всем тем, кто интересуется новейшими достижениями физики. Вместе с тем не все, наверное, знают, что первые работы Габора по голографии, проведенные еще в «долазерный» период (1948-1951), были поставлены и выполнены именно в связи с задачей повышения разрешающей способности в электронной микроскопии.