Смекни!
smekni.com

Рассеяние рентгеновских лучей на молекулах фуллерена (стр. 7 из 11)

Регистрируемая интенсивность рентгеновских лучей, рассеянных атомами облучаемого образца, представляет собой квадрат амплитуды суммарного колебания (11). Для вычисления этой величины целесообразно воспользоваться методом комплексных амплитуд. Каждое слагаемое суммы (11) запишем в комплексной форме

A1 fexp [i(wt – Djj)] (3.28)

где i – мнимая единица, Djj – сдвиг фазы, равный в рассматриваемой физической картине kxjsin(q).

Выражение (12) перепишем в виде

A1 feiwte–iDjj (3.29)

Сомножитель, зависящий от времени, описывает колебания электромагнитного поля с частотой w. Модуль этой величины равен единице. Как следствие, комплексная амплитуда электромагнитного колебания, выраженного функцией (12) имеет вид:

A1 fexp [–iDjj] (3.30)

Комплексная амплитуда суммарного колебания, регистрируемого детектором равна сумме величин (3.30), причем суммирование проводится по всем центрам рассеяния – т.е. по всем атомам облучаемого образца. Квадрат реальной части указанной суммы определяет регистрируемую интенсивность рассеянного рентгеновского излучения

(3.31)

с точностью до аппаратурного коэффициента (сомножителя, определяемого характеристиками регистрирующей аппаратуры).

Интенсивность (3.31) является функцией полярного угла q и описывает в плоскости xoz угловое распределение рентгеновских лучей, рассеянных цепочкой атомов, расположенных вдоль оси ox.

Теперь рассмотрим рассеяние рентгеновских лучей на конечном множестве атомов, находящихся в одной плоскости. Пусть на эту систему атомов падает плоская рентгеновская волна с волновым вектором k0, перпендикулярным плоскости атомов.

Свяжем с данной физической системой оси декартовых координат. Ось oz направим вдоль вектора k0, а оси ox и oY расположим в плоскости атомов. Положение каждого атома задается двумя координатами xj и yj, где j = 0, … N – 1. Пусть начало координат совмещено с центром одного из атомов, который имеет номер j = 0.

Рассмотрим рассеяние рентгеновских лучей в полупространство z > 0. При этом можно полагать, что детектор перемещается по полусфере определенного радиуса R, который много больше размера облучаемого образца. Направление на детектор в условиях дифракции Фраунгофера совпадает с волновыми векторами k рассеянных волн, приходящих во входное окно детектора. Это направление характеризуется двумя углами: полярным q, который откладывается от оси oz (как на рис.3.9 и 3.10), и азимутом Ф, который отсчитывается от оси ox в плоскости xoY (см. рис.3.10). Иначе говоря, q - угол между волновыми векторами первичной k0 и рассеянной k волн. Азимут Ф представляет собой угол между осью OX и проекцией вектора k на плоскость XOY.

Как и предыдущем случае одномерной цепочки атомов, амплитуда суммарного колебания, регистрируемая детектором определяется относительными сдвигами фаз когерентных волн, рассеянных отдельными атомами. Сдвиг фаз рассеянных волн связан с разностью хода соотношением (3.24), как и в выше рассмотренном случае.

Найдем разность хода между волнами, рассеянными атомами с координатами (x0=0, y0=0) и (x, y) в направлении, заданном волновым вектором k (т.е. определенными углами q и Ф). Проведем вспомогательную ось OU вдоль проекции вектора k на плоскость XOY(см. рис.3.10).


Рис.3.10. К расчету разности хода вторичных волн, рассеянных на плоской системе атомов в условиях дифракции Фраунгофера.

Точка F на оси OU – проекция центра j-го атома. Длина отрезка OF равняется xcos(Ф) + ysin(Ф), что можно получить преобразованием координат или геометрическим построением. Проекция отрезка OF на направление волнового вектора k дает искомую разность хода – длину отрезка OG, равную

Dl = [xcos(Ф) + ysin(Ф)] sin(q). (3.32)

Следовательно, сдвиг фаз вторичных волн, рассеянными атомами с координатами (x0=0, y0=0) и (xj, yj) в направлении, заданном определенными углами q и Ф, равняется

Djj = k [xjcos(Ф) + yjsin(Ф)] sin(q). (3.33)

Регистрируемая интенсивность рассеянного рентгеновского излучения выражается формулой, аналогичной (3.31):

(3.34)

Наконец, рассмотрим дифракцию Фраунгофера рентгеновских лучей на трехмерном объекте. Воспользуемся системой декартовых координат, использованной в предыдущей задаче. Отличие физической картины от предыдущей заключается лишь в том, что центры некоторых атомов имеют координаты zj¹ 0.

Поверхность постоянной фазы первичной плоской монохроматической волны достигает центров рассеяния с различными координатами z¹ 0 в разные моменты времени. Как следствие, начальная фаза волны, рассеянной атомом с координатой z¹ 0 будет отставать от фазы волны, рассеянной атомом с координатой z = 0, на величину wDt, где Dt = z / v, v – скорость распространения волны. Частота и длина волны связаны соотношением

w = 2pv / l(3.35)

следовательно, сдвиг фазы рассеянной волны равняется -2pz / l или -kz.

С другой стороны, если координата j-го атома zj¹ 0, разность хода относительно «нулевой» рассеянной волны дополнительно увеличивается на величину zcos(q). В результате, сдвиг фазы волны, рассеянной атомом с произвольными координатами (xj, yj, zj) в направлении, заданном углами q и Ф, равен

Djj = k { [xjcos(Ф) + yjsin(Ф)] sin(q) + zjcos(q) -zj}. (3.36)

Интенсивность рассеянных рентгеновских лучей, регистрируемая детектором, выражается следующей формулой:

(3.37)

3. Практическая часть

3.1. Псевдосимметрия

3.1.1. Поворотная псевдосимметрия дифракционных картин

Симметрией называется инвариантность физической или геометрической системы по отношению к различного рода преобразованиям.

Различные типы симметрии определяются преобразованиями, относительно которых инвариантна данная система. Существует симметрия трансляционная, поворотная, симметрия подобия и т.д.

Симметрия представляет собой одно из фундаментальных свойств Вселенной. Даже основные законы физики: сохранения энергии, импульса и момента импульса связаны с определенными симметрическими преобразованиями пространственно-временного континуума.

Конкретное преобразование, относительно которого инвариантна данная система, называется операцией симметрии. Множество точек, остающихся неподвижными при симметрическом преобразовании, образуют элемент симметрии. Например, если операцией симметрии является поворот, то соответствующим элементом симметрии будет ось, вокруг которой совершается поворот.

Симметрия конечных физических систем, элементы симметрии которых пересекаются хотя бы в одной точке, называется точечной. К точечной симметрии относятся инвариантность относительно поворота на определенный угол (поворотная симметрия), инвариантность относительно отражения в определенной плоскости (зеркальная симметрия), инвариантность относительно инверсии в заданной точке (инверсионная симметрия).

Симметрия подавляющего большинства физических объектов не является абсолютной. Это означает, что физическая или геометрическая система не полностью инвариантна относительно рассматриваемого преобразования.

Для количественного описания отклонений от точной симметрии используется функционал, называемый степенью инвариантности или коэффициентом псевдосимметрии.

Пусть какая-либо физическая характеристика исследуемого объекта описывается функцией точки

. Этой функцией может быть массовая плотность, температура электрический потенциал, плотность электрического заряда и т.д. Нас симметрия данного объекта относительно преобразования, которое задано некоторой операцией
. Тогда степень инвариантности определяется следующей формулой (4.1), где V – объем объекта. Под интегралом в числителе находится произведение функции
на функцию того же объекта, подвергнутого преобразованию
. Числитель называется сверткой функции
относительно операции
. В знаменателе стоит определенный интеграл по объему объекта от квадрата функции
.

(4.1)

Знаменатель формулы (4.1) служит нормировкой, поэтому величина функционала

может изменяться от 0 до 1. Если рассматриваемая физическая система полностью инвариантна относительно операции
, то коэффициент псевдосимметрии равен единице. Значение
= 0 соответствует случаю, когда симметрия системы относительно операции
полностью отсутствует.

Понятие степени инвариантности можно распространить и на описание симметрии углового распределения интенсивности рассеянных рентгеновских лучей. В первую очередь, нас интересует инвариантность дифракционных картин относительно поворота на определенный азимутальный угол вокруг точки, соответствующей полярному углу q = 0. Иначе говоря, целью исследования является поворотная симметрия углового распределения интенсивности рассеянных рентгеновских лучей, причем поворот осуществляется вокруг волнового вектора k0 первичного излучения.