Федеральное агентство связи
Сибирский Государственный Университет Телекоммуникаций и Информатики
Межрегиональный центр переподготовки специалистов
Новосибирск, 2009
ВАРИАНТ 3
503. Точка совершает простые гармонические колебания, уравнение которых X= Asin wt, где А=5 см, w=2с-1. В момент времени, когда точка обладала потенциальной энергией П=0,1 мДж, на нее действовала возвращающая сила F=5 мН. Найти этот момент времени t.
Решение:
Воспользуемся Законом сохранения энергии для данной системы:
Возьмем производную от
С другой стороны из соотношения
где
Размерность
Ответ: В момент времени
513. В электрическом контуре изменение тока описывается уравнением:
Решение:
Скорее всего, в условии задачи допущена ошибка и изменение тока описывается уравнением:
По определению тока:
получаем выражение для заряда
где С – константа, определяемая из начальных условий. Таким образом получаем:
период колебаний найдем из соотношения:
Ответ: уравнение колебаний заряда на конденсаторе:
период
523. Материальная точка участвует одновременно в двух взаимно-перпендикулярных колебаниях, происходящих согласно уравнениям:
Решение:
Поскольку
в виде:
Это есть уравнение Эллипса, с центром Эллипса вначале координат, и полуосями по координате x равной А, по координате
Сделаем чертеж. Направление движения точки против часовой стрелки поскольку в начальный момент при
2 см
0
533. Колебательный контур имеет конденсатор емкостью 0,2 мкФ, катушку индуктивности 5 мГн и резистор. При каком логарифмическом декременте затухания разность потенциалов на обкладках конденсатора уменьшится за 1 мс в три раза? Чему равно при этом сопротивление резистора?
Решение: Логарифмический декремент затухания:
где
Логарифмический декремент затухания показывает, во сколько раз изменится логарифм амплитуды двух последовательных колебаний:
Уравнение, описывающее изменение напряжения на обкладках конденсатора имеют вид: