Смекни!
smekni.com

Определение параметров тяговой подстанции (стр. 1 из 5)

Государственное образовательное учреждение высшего профессионального образования

Петербургский государственный университет

путей сообщения

Кафедра «Электроснабжение железных дорог»

Пояснительная записка к курсовому проекту

по дисциплине «Релейная защита»

Санкт-Петербург

2006


Введение

В системах электроснабжения нередко возникают короткие замыкания и другие ненормальные режимы работы. К.з. возникают вследствие дефектов, старения и загрязнения изоляции токоведущих частей, обрыва и схлестывания проводов при сильном ветре или гололеде. Электрическая дуга в месте замыкания способна вызвать пережоги, оплавление и разрушение электрического оборудования и распределительных устройств, отжиг и обрыв контактного провода. Разрушения оказываются тем значительнее, чем больше ток в дуге и время ее существования. Чтобы к.з. не вызвало большого ущерба, поврежденное электрооборудование необходимо как можно быстрее отключить.

Отключение электрической системы осуществляется коммутационными аппаратами – высоковольтными выключателями, привод которых снабжен специальным механизмом. Для отключения выключателя необходимо осуществить управляющее воздействие на этот механизм.

Автоматические устройства, служащие для выявления к.з. и ненормальных режимов и воздействующие в необходимых случаях на механизм отключения выключателя или на сигнал, называют релейной защитой.

Цель проекта – приобретение навыка расчета параметров аварийных режимов и уставок защит элементов тягового электроснабжения электрических железных дорог переменного тока напряжением 27,5 кВ. В проекте требуется:

рассчитать уставки защит на тяговой подстанции для понижающего трансформатора, шин 27,5 кВ и фидеров тяговой нагрузки;

определить уставки защит постов секционирования (ПС) и пунктов параллельного соединения (ППС) для одной межподстанционной зоны;

построить диаграммы селективности и характеристики срабатывания защит, а также векторные диаграммы аварийных режимов;

разработать функциональные схемы защит фидеров тяговой сети и алгоритмы их работы;

выбрать аппаратные средства реализации функций защит;

построить принципиальные схемы защит трансформатора;

Рекомендуемый порядок расчета уставок защит.

Анализ исходных данных.

Формирование расчетных схем.

Определение способа защиты и состава защит.

Вычисление параметров аварийных режимов.

Расчет уставок защит.


Исходные данные

Шифр задания – 1–2–4–4–1.

Таблица 1. Токи короткого замыкания на вводах подстанции, кА

Режим Обозна- Первая цифра шифра задания
ЭС чение. 1
Максимум Ic,max 4,1
Минимум Ic, min 1,3

Таблица 2. Параметры районной нагрузки

Наименование Обозначение Вторая цифра шифра
2
Общая мощность, % s=SР.Н/SN 20
Нагрузка фидера, МВА SФ,РН 1,5
Марка провода фидера - AAБ-3 ´ 70
Длина фидера, км LФ, Р.Н 30
Уставка МТЗ фидера, с tф, р.н 1,0

Таблица 3. Параметры устройств тягового электроснабжения

Наименование Обознач. Третья цифра шифра задания
4
Вид тяговой сети - ТПО
Расстояние, км (см. рис. 1) L21 15
L1 15
L22 30
Рабочий ток, А ввода в РУ 27,5 кВ IРУ, раб, max 800
фидера подстанции IП, раб, max 710
фидера ПС IПС, раб, max 350
ППС IППС, раб, max
Трос груп. заземления - АС-70
Удельные сопротивления тяговой сети, Ом/км z11 0,466
z21 0,414
z22 0,25
z -1,2 0,355
z'p,2 0,059

Таблица 4. Параметры понижающего трансформатора

Наименование Обозначение Четвертая цифра шифра задания
4
Тип трансформатора - ТДТНЖ 40000 /110 У1
Схемы соединения обмоток - Уo/Д/Д
Мощность, МВА SN 40
Регулирование высшего напряжения, % ∆Ua ±16
Напряжения обмоток, кВ номинальное UB, N UC, N UH, N 115 27,5 11,0
максимальное UB, max UC, max UH, max 133 28,9 12,0
минимальное UB, min UC, min UH, min 97 26,2 11
Напряжения опыта КЗ, % для среднего напряжения uk,ВС u,ВН uk,СН 10,5 17,5 6,5
максимального регулируемого напряжения uk, ВC, +РО uk, ВН, +РО 11,4 19,3
минимального регулируемого напряжения uk, ВC, -РО uk, ВН, -РО 9,4 17,0
Потери, кВТ опыта КЗ PКЗ 200
опыта ХХ PXX 39
Относит. сопротивл. X*в(1), В 0,245

Примечание. Наибольшие рабочие напряжение электрооборудования в сети 220 кВ составляет 252 кВ, а в сети 110 кВ – 126 кВ.

1. Расчет защит понижающего трансформатора

1.1 Анализ исходных данных и принимаемые допущения

Схема главных соединений представлена на рис. 1. Расчет производится для задания с шифром 1–2–4–4–5. Для этого варианта приведены данные по трансформаторам и нагрузке (см. рис. 1).

Принимаем общепринятые допущения для аварийного режима: короткое замыкание (КЗ) металлическое трехфазное, точка КЗ электрически удалена, используется линейная схема замещения, параметры 3-х фазной системы симметричны, учитываются режимы максимума и минимума энергосистемы (ЭС), поперечные сопротивления и продольные активные принимаются равными нулю, определяются периодическая составляющая тока КЗ [1]. Принимаем, что отсутствует подпитка точки КЗ крупными электродвигателями. В качестве метода расчета выбираем приближенный метод комплексных величин в именованных единицах для симметричных трехфазных цепей. При изложенных условиях расчет производится для одной фазы трехфазной системы.

1.2 Формирование расчетных схем

Анализируем возможные режимы работы понижающих трансформаторов. На тяговых подстанциях переменного тока обычно предусматривается в нормальном режиме работа одного трансформатора. В вынужденных режимах, например, при выпадении из работы смежной тяговой подстанции, а также в особых режимах нормальной работы, например, при сгущении поездов, трансформаторы могут работать параллельно на шины 27,5 кВ. С учетом возможной работы энергосистемы в режимах минимума или максимума получаем 4 расчетных схемы для определения токов КЗ на шинах низшего (НН) и среднего (СН) напряжений. Для расчетов КЗ при параллельной работе потребуется определить сопротивления схемы замещения отдельно для каждой обмотки трансформатора.

Для трансформатора необходимо учитывать также наличие на обмотках ВН устройств регулирования напряжения и заводской допуск на величину напряжения короткого замыкания uк [7], [20].

1.3 Определение способа защиты и состава защит

Состав защит трансформаторов зависит от его мощности. Необходимы следующие защиты:

двухступенчатая газовая защита (ГЗ) с действием первой ступени на сигнал, а второй на отключение трансформатора со всех сторон;

дифференциальная токовая защита (ДТЗ) с отстройкой от бросков тока намагничивания при включении ненагруженного трансформатора и действующая на отключение всех выключателей трансформатора без выдержки времени с коэффициентом чувствительности не менее 2;

максимальная токовая защита на стороне ВН обладающая необходимой чувствительностью к КЗ на стороне СН и НН и отключающая трансформатор со стороны всех напряжений;

защита от перегрузки (МТЗ ПГ), отстраиваемая от номинального тока нагрузки с выдержкой времени 9с;

защита от перегрева масла (ЗПМ) с выдержкой времени 9 с, работающая на включение обдува трансформатора, с уставкой защиты 0,7 от номинального тока с учетом коэффициентов надежности и возврата.

Для общепромышленных трансформаторов [8, 9] рекомендуется установка максимальных токовых защит (МТЗ), при необходимости с комбинированным пуском (МТЗ КП) или пуском по напряжению (МТЗ ПН) на сторонах СН и (или) НН. С другой стороны, вводы шин тяговой нагрузки должны быть оборудованы либо двухступенчатой дистанционной направленной защитой, дополненной токовой отсечкой, либо двухступенчатой защитой, содержащей максимальную токовую и дистанционную защиты.

Принимаем решение установить на вводе шин 27,5 кВ максимальную токовую и дистанционную защиты с выдержками времени 1,2 с. Максимальную токовую защиту на ВН выполняем с двумя выдержками времени, первая с действием на отключение ввода шин районной нагрузки, вторая с действием на отключение трансформатора со всех сторон.

Защита тяговых шин обычно реализуется на дифференциальной защите, контролирующей токи всех присоединений шин. В простейшем случае для шин устанавливается потенциальная защита (ПЗ), чаще называемой защитой минимального напряжения (ЗМН). В рассматриваемом варианте шины защищаются защитами ввода в РУ 27,5 кВ. Кроме того, устанавливаем ЗМН. Эта же защита должна срабатывать при КЗ на линиях питающих подстанцию, для ликвидации подпитки по тяговой сети со стороны смежной подстанции, т.е. выполнять функции защиты от подпитки (ЗПП).