где данный интеграл (5.3) вычисляется по всему бесконечному пространству, т. е. по координатам х, у, z от –¥ до ¥. Таким образом, условие (5.3) говорит об объективном существовании частицы в пространстве.
Чтобы волновая функция являлась объективной характеристикой состояния микрочастиц, она должна удовлетворять ряду ограничительных условий. Функция Y, характеризующая вероятность обнаружения действия микрочастицы в элементе объема, должна быть конечной (вероятность не может быть больше единицы), однозначной (вероятность не может быть неоднозначной величиной) и непрерывной (вероятность не может изменяться скачком).
Волновая функция удовлетворяет принципу суперпозиции: если система может находиться в различных состояниях, описываемых волновыми функциями Y1, Y2,..., Yn,... то она также может находиться в состоянии Y, описываемом линейной комбинацией этих функций:
где Сn (n=1, 2, ...)—произвольные, вообще говоря, комплексные числа. Сложение волновых функций (амплитуд вероятностей), а не вероятностей (определяемых квадратами модулей волновых функций) принципиально отличает квантовую теорию от классической статистической теории, в которой для независимых событий справедлива теорема сложения вероятностей.
Волновая функция Y, являясь основной характеристикой состояния микрообъектов, позволяет в квантовой механике вычислять средние значения физических величин, характеризующих данный микрообъект. Например, среднее расстояние árñ электрона от ядра вычисляют по формуле
где интегрирование производится, как и в случае (5.3).
3. (1) Материальная точка массой 7,1 г совершает гармонические колебания с амплитудой 2 см и частотой 5 Гц. Чему равна максимальная возвращающая сила и полная энергия колебаний?
Дано: | СИ | Решение: |
| | |
Найти: | Н Дж |
4. (11) В вакууме распространяется плоская электромагнитная волна. Амплитуда напряженности магнитного поля волны 0,1 А/м. Определить амплитуду напряженности электрического поля волны и среднюю по времени плотность энергии волны.
Дано: | СИ | Решение: |
| | |
Найти: | |
5. (21) Расстояние между двумя когерентными источниками 0,9 мм, а расстояние от источников до экрана 1,5 м. Источники испускают монохроматический свет с длиной волны 0,6 мкм. Определить число интерференционных полос, приходящихся на 1 см экрана.
Дано: | СИ | Решение: |
| | |
Найти: |
6. (31) Параллельный пучок света от монохроматического источника (