Выбираем масштаб:
MI=0,05 A/cм;
MU=1,4 A/см;
Определяем длину вектора по формулам lI=İ/MI и lU=U/MU:
lI=lI1=lI2=23,8 см;
lI3=13,9 см;
lI4=9,9 см;
lU=28,6 см;
lUed=13,6 см;
lUda=0,3 см;
lUac=14,9 см;
lUcb=0,29 см;
lUkb=3,2 см;
lUaf=14,9 см;
lUfb=0,6 см;
Схема соединения:
RA XLA
A
RB XCB
0
B
RC XLC
C
Рис.4.0
Числовые параметры:
RA=280 Om; XLA=314 Om; UФ=340 B;
RB=118 Om; XCB=280 Om;
RC=147 Om; XLC=560 Om;
Графоаналитический метод
ZA= R2A+X2LA =420,70893 Om;
ZB= R2B+X2CB =303,84865 Om;
ZC= R2C+X2LC =578,97237 Om;
cosφA=RA/ZA=0,66554 => φA=480
cosφB=RB/ZB=0,38835 => φB=670
cosφC=RC/ZC=0,25389 => φC=750
IA=UA/ZA=0,80816 A;
IB=UB/ZB=1,11898 A;
IC=UC/ZC=0,58725 A; c
Определяем ток в нулевом проводе, для этого строим векторную диаграмму.
Под углом 1200 относительно друг друга строятся векторы фазных напряжений одинаковой длинны, векторы же фазных токов строятся в масштабе под углами φ относительно соответствующих фазных напряжений. Если нагрузка носит индуктивный характер, то вектор тока отстает от напряжения на угол φ, если же емкостной, то опережает на угол φ.
MI=0,2 A/см;
Из диаграммы видно, что ток в нулевом проводе равен I0=0,16 A;
i=Imsin(ωt+ψ) A; i=
PA=UIAcosφA=182,87335 Вт;
PB=UIBcosφB=147,749 Bт;
PC=UICcosφC=50,69295 Bт;
PОБЩ=PA+PB+PC=381,3153 Bт;
QA=UIAsinφA=204, 19717 Вар;
QB=UIBsinφB=350, 20901 Вар;
QC=UICsinφC=192,96158 Вар;
QОБЩ=QA+QB+QC=747,26776 Вар;
SA=UIA=247,7744 ВА;
SB=UIB=380,4532 ВА;
SC=UIC=199,665 ВА;
SОБЩ= P2ОБЩ+Q2ОБЩ = 838,93412 ВА;
Символический метод
Выражаем фазные напряжения в комплексной форме:
UA=UA=340ej0 B;
UB=UB=340e-j120 B;
UC=UC=340e-j240 B;
Выражаем фазные сопротивления в комплексной форме:
ZAejφA=ZA=420,70893ej48 Om;
ZBejφB=ZB=303,84865ej67 Om;
ZCejφC=ZC=578,97237ej75 Om;
Выражаем фазные токи в комплексной форме:
İA=UA/ZA=0,80816e-j48 A;
İB=UB/ZB=1,11898e-j187 A;
İC=UC/ZC=0,58725e-j315 A;
Вычисляем ток в нулевом проводе:
I0=İA+İB+İC=0,16219ej18 A;
Находим активные мощности:
PA=UIAcosφA=182,87335 Вт;
PB=UIBcosφB=147,749 Bт;
PC=UICcosφC=50,69295 Bт;
PОБЩ=PA+PB+PC=381,3153 Bт;
Находим реактивные мощности:
QA=UIAsinφA=204, 19717 Вар;
QB=UIBsinφB=350, 20901 Вар;
QC=UICsinφC=192,96158 Вар;
QОБЩ=QA+QB+QC=747,26776 Вар;
Находим полную мощность цепи:
SA=UAIA=247,7744ej48 BA;
SB=UBIB=380,4532ej67 BA;
SC=UCIC=199,665ej75 BA;
SОБЩ=SA+SB+SC=384, 19197+j747,26777=840,24555ej63 BA;
Схема электрической цепи:
2+ 1
R1 R2
U
C
-
Рис.5.0
Числовые параметры:
U=220 B;
C=15 мkФ;
R1=106 Om;
R2=106 Om;
Определить:
1. Закон изменения тока и ЭДС в цепи постоянного тока;
2. Длительность переходных процессов (t=5τ);
3. Энергию магнитного поля в момент времени t=3τ;
Разомкнем переключатель в положение 1. Конденсатор отключается от источника и образуется контур разряда:
τ=(R1R2) /(R1+R2) *C=7,5 c;
uC=uУСТ+uСВ=ue-t/τ;
i=-Ie-t/τ;
Длительность переходного процесса:
t=5τ=5*7,5=37,5 c;
Определяем ток в цепи в момент времени t = 3 τи:
i=-Ie-t/τ=-1,09 мкА;
Определяем энергию электрического поля конденсатора в момент времени t = 3 τи:
WЭ=C*uC32/2= 0,00089 Дж;
Вычисляем значения напряжений на конденсаторе в различные моменты времени по формуле: uC=ue-t/τ;
Изменение напряжения на
конденсаторе при его разрядке (рис.5.1)
t,c | 0 | τ | 2τ | 3τ | 4τ | 5τ |
u,B | 220 | 80,9 | 29,8 | 10,9 | 4,03 | 1,5 |
Рис.5.1
Изменение тока на конденсаторе при его разрядке (рис.5.2)
t,c | 0 | τ | 2τ | 3τ | 4τ | 5τ |
i, мкА | -110 | -42,98 | -8,046 | -1,09 | -0,1612 | -0,021 |
Рис.5.2
В данном курсовом проекте я проводил:
анализ электрического состояния линейных электрических цепей постоянного тока
анализ электрического состояния нелинейных электрических цепей постоянного тока
анализ электрического состояния однофазных нелинейных электрических цепей переменного тока
анализ электрического состояния трехфазных нелинейных электрических цепей переменного тока
исследование переходных процессов в электрических цепях