Содержание
Введение
Глава 1 Открытие явления сверхпроводимости
1.1 Первые экспериментальные факты
1.2 Сверхпроводящие вещества
1.3 Эффект Мейснера
1.4 Изотопический эффект
1.5 Предпосылки создания теории сверхпроводимости
Глава 2 Теория сверхпроводимости
2.1 Теория БКШ
2.2 Щель в энергетическом спектре
2.3 Бесщелевая сверхпроводимость
2.4 Образование электронных пар
2.5 Эффективное взаимодействие между электронами, обусловленное фононами
2.6 Каноническое преобразование Боголюбова
2.7 Промежуточное состояние
2.8 Сверхпроводники второго рода
2.9 Термодинамика сверхпроводимости
2.10 Туннельный контакт и эффект Джозефсона
2.11 Квантование магнитного потока (макроскопический эффект)
2.12 Найтовский сдвиг
2.13 Высокотемпературная сверхпроводимость
Глава 3. Применение сверхпроводимости в науке и технике
3.1 Сверхпроводящие магниты
3.2 Сверхпроводящая электроника
3.3 Сверхпроводимость и энергетика
3.4 Магнитные подвесы и подшипники
Заключение
Библиография
Введение
У большинства металлов и сплавов при температуре порядка несколько градусов по Кельвину сопротивление скачком обращается в нуль. Впервые это явление, названное сверхпроводимостью, было обнаружено в 1911 г. Камерлинг – Оннесом. Вещества, обладающими таким явлением назвали сверхпроводниками. В 1957 году Дж. Бардин, Л. Купер, Дж. Шриффер разработали микроскопическую теорию сверхпроводимости, позволившую принципиально понять это явление. Теория БКШ объяснила основные факты в области сверхпроводимости (отсутствие сопротивления, зависимость Тк от массы изотопа, бесконечную проводимость (Е = 0), эффект Мейснера (В = 0), экспоненциальную зависимость электронной теплоёмкости вблизи Т = 0 и др.). Ряд выводов теории показывает хорошее количественное согласие с опытом. Многие вопросы нуждаются ещё в разработке (распределение сверхпроводящих металлов в системе Менделеева, зависимость Тк от состава и структуры сверхпроводящих соединений, возможность получения сверхпроводников с максимально высокой температурой перехода и др.). Успехи экспериментального и теоретического исследований дали реальную возможность приступить к работам по освоению этого физического явления. На протяжении почти 100 лет идут разработки в этой области, открываются новые сверхпроводящие материалы, ведутся поиски высокотемпературных сверхпроводников. В последние годы, особенно после создания теории сверхпроводимости, интенсивно развивается техническая сверхпроводимость.
Актуальность. Сегодня сверхпроводимость – это одна из наиболее изучаемых областей физики, явление, открывающее перед инженерной практикой серьёзные перспективы. Большое распространение получили приборы, основанные на явлении сверхпроводимости, без них уже не может обойтись ни современная электроника, ни медицина, ни космонавтика
Цель. Подробнее рассмотреть явление сверхпроводимости, его свойства, практическое применение, изучить теорию БКШ, а также выяснить перспективы развития данной области физики.
Задачи.
1)Выяснить, что собой представляет сверхпроводимость, причины его возникновения и условия возможного перехода вещества из нормального состояния в сверхпроводящее.
2)Объяснить причины, влияющие на разрушение сверхпроводящего состояния.
3)Раскрыть свойства и применение сверхпроводников.
Объект. Объектом данной курсовой работы является явление сверхпроводимости, сверхпроводники.
Предмет. Предметом являются свойства сверхпроводников и их применение.
Практическое применение. Явление сверхпроводимости используется для получения сильных магнитных полей, сверхпроводники применяются при создании вычислительных машин, для устройства модуляторов, выпрямителей, коммутаторов, персисторов и персистронов, измерительных приборов.
Методы исследования. Анализ научной литературы.
Глава 1. Открытие явления сверхпроводимости
1.1 Первые экспериментальные факты
В 1911 году в Лейдене голландский физик Х. Камерлинг-Оннес впервые наблюдал явление сверхпроводимости. Эта проблема исследовалась и ранее, опыты показывали, что с понижением температуры, сопротивление металлов падало. Одним из первых его исследований в области низких температур было изучение зависимости электрического сопротивления от температуры в ходе опыта с ртутной цепью. Ртуть тогда считалась самым чистым металлом, который можно было получить дистилляционной перегонкой. Изучая температурный ход электросопротивления Hg, он обнаружил, что при температуре ниже 4,20К ртуть практически теряет сопротивление. Для этого опыта он использовал аппарат (рис. 1), который состоял из семи U-образных сосудов с сечением 0,005 мм2, соединённых перевёрнутыми. Такая форма сосудов нужна была для свободного сжимания и разжимания ртути без нарушения непрерывности ртутной нити. В точках 1 и 2 по трубкам 3 и 4 подводился ток, в точках 5 и 6 измерялось падение напряжения на участках ртутной цепи.
Рис. 1
На рис.2 приведены результаты его экспериментов с ртутью. Следует обратить внимание на то, что температурный интервал, в котором сопротивление уменьшалось до нуля, чрезвычайно узок.
Рис. 2. Зависимость сопротивления платины и ртути от температуры.
На графике видно, что при температуре 4,20К электрическое сопротивление ртути резко исчезло. Такое состояние проводника, при котором его электрическое сопротивление равно нулю, называется сверхпроводимостью, а вещества в таком состоянии – сверхпроводниками. Переход вещества в сверхпроводящее состояние происходит в очень узком температурном интервале (сотые доли градуса) и поэтому считают, что переход осуществляется при определённой температуре Тк, называемой критической температурой перехода вещества в сверхпроводящее состояние.
Экспериментально сверхпроводимость можно наблюдать двумя способами:
1) включив в общую электрическую цепь, по которой течёт ток, звено из сверхпроводника. В момент перехода в сверхпроводящее состояние разность потенциалов на концах этого звена обращается в нуль;
2) поместив кольцо из сверхпроводника в перпендикулярное к нему магнитное поле. Охладив затем кольцо ниже Тк, выключают поле. В результате в кольце индуцируется незатухающий электрический ток. Ток в таком кольце циркулирует неограниченно долго.
Камерлинг – Оннес продемонстрировал это, перевезя сверхпроводящее кольцо с текущим по нему током из Лейдена в Кембридж. В ряде экспериментов наблюдалось отсутствие затухания тока в сверхпроводящем кольце в течение примерно года. В 1959 г. Коллинз сообщил о наблюдавшемся им отсутствия уменьшения тока в течение двух с половиной лет. [25,С. 237].
Эксперименты показали, что если создать ток в замкнутом контуре из сверхпроводников, то этот ток продолжает циркулировать и без источника ЭДС. Токи Фуко в сверхпроводниках сохраняются очень долгое время и не затухают из-за отсутствия джоулева тепла (токи до 300А продолжают течь много часов подряд). Изучение прохождения тока через ряд различных проводников показало, что сопротивление контактов между сверхпроводниками также равно нулю. Отличительным свойством сверхпроводимости является отсутствие явления Холла. В то время, как в обычных проводниках под влиянием магнитного поля, ток в металле смещается, в сверхпроводниках это явление отсутствует. Ток в сверхпроводнике как бы закреплен на своем месте.
Сверхпроводимость исчезает под действием следующих факторов:
1) повышение температуры;
С повышением температуры до некоторой Tк почти внезапно появляется заметное омическое сопротивление. Переход от сверхпроводимости к проводимости тем круче и заметнее, чем однороднее образец (наиболее крутой переход наблюдается в монокристаллах).
2) действие достаточно сильного магнитного поля;
Переход от сверхпроводящего состояния в нормальное можно осуществить путем повышения магнитного поля при температуре ниже критической Tк. Минимальное поле Bк, в котором разрушается сверхпроводимость называется критическим магнитным полем. Зависимость критического поля от температуры описывается эмпирической формулой:
, (1)где В0 - критическое поле, экстраполированное к абсолютному нулю температуры. Для некоторых веществ по - видимому имеет место зависимость от Т в первой степени. Если мы начнем увеличивать напряженность внешнего поля, то при критическом его значении сверхпроводимость разрушится. Чем ближе мы подходим к точке критической температуры, тем меньше должна быть напряженность внешнего магнитного поля для разрушения эффекта сверхпроводимости, и наоборот, при температуре, равной температуре абсолютного нуля напряженность должна быть максимальной по отношению к другим случаям для достижения такого же эффекта. Данная взаимосвязь иллюстрируется следующим графиком (рис. 3).
Рис. 3
Если мы начнем увеличивать напряженность внешнего поля, то при критическом его значении сверхпроводимость разрушится. Чем ближе мы подходим к точке критической температуры, тем меньше должна быть напряженность внешнего магнитного поля для разрушения эффекта сверхпроводимости, и наоборот, при температуре, равной температуре абсолютного нуля напряженность должна быть максимальной по отношению к другим случаям для достижения такого же эффекта. При действии магнитного поля на сверхпроводник наблюдается особого вида гистерезис, а именно если повышая магнитное поле уничтожить сверхпроводимость при
(H - сила поля, Hк - повышенная сила поля):