Полагая
, имеем .Далее
и равенство (54) принимает вид .Вычисляя интеграл и разрешая полученное уравнение относительно Δ, находим
, . (55)Непосредственно из (55) следует, что это выражение нельзя получить путём вычисления эффекта взаимодействия между электронами методом теории возмущений. Теория возмущений даёт поправки к энергии в виде степеней малой энергии взаимодействия ν, а величина Δ стремится к нулю, как
, и при значениях не может быть разложена в ряд.С целью выяснения физического смысла величины Δ выразим энергию основного состояния Е0 через Δ. Подставляя (46) и (47) в (42), находим
Если
, и функции канонического преобразования сводятся к (51) для тривиального решения уравнения (48). Если , то . Таким образом, при нетривиальные решения (48) энергетически выгоднее тривиальных.Возбуждённые состояния системы соответствуют «рождению» квазичастиц, зависимость энергии которых от импульса определяется формулой (50). Последнюю при
можно записать в виде . (57)При больших разностях
зависимость энергии квазичастиц от импульса такая же, как для свободных частиц с массой m*. Однако при приближении к значению (граничный волновой вектор сферы Ферми) энергия возбуждения стремится не к нулю, а к конечному пределу при .Следовательно, величина
определяет разность энергии между основным и первым возбуждённом состояниями системы электронов. Если , т.е. при наличии энергетической щели, основное состояние более устойчиво по отношению к внешним воздействиям. В этом случае электрон может отдавать и получать энергию порциями, не меньшими .При
функции (47) канонического преобразования одновременно отличны от нуля, следовательно, новые фермиевские операторы и , соответствующие рождению новых элементарных возбуждений (квазичастиц), относятся к состояниям, являющимися суперпозицией электронных и дырочных состояний одноэлектронного приближения. Такие элементарные возбуждения являются коллективными сильно скоррелированными состояниями двух электронов, обусловленными их спариванием. Рассеяние (торможение) электронов требует разрыва пары. Следовательно, оно возможно только в том случае, когда кинетическая энергия электронов, связанная с появлением тока, будет превышать энергию спаривания. Если р – средний импульс электрона в токовом состоянии, то изменение энергии по абсолютной величине будет равно , поскольку , то сверхпроводимость должна наблюдаться при .Сверхпроводящее состояние возникает только в таких металлах, для которых энергия электрон-фононного взаимодействия достаточно велика. С другой стороны, чем больше электрон-фононное взаимодействие, тем больше сопротивление металла в нормальном состоянии, так как при этом велика вероятность рассеяния электронов с испусканием и поглощением фононов. Этим качественно объясняется известный факт, что хорошие проводники не переходят в сверхпроводящее состояние. Сильное электрон-фононное взаимодействие, приводящее к большому сопротивлению в нормальном состоянии, способствует образованию сверхпроводящего состояния, лишённого сопротивления.
Выше рассматривались основные черты микротеории сверхпроводимости без учёта кулоновского взаимодействия между электронами. Последовательная теория сверхпроводимости металлов с учётом кулоновского взаимодействия была развита Боголюбовым. [4,С. 285]
2.7 Промежуточное состояние
Было выяснено, что при достижении внешним магнитным полем некоторого критического значения сверхпроводимость скачком разрушается. Но эта простая ситуация возможна, если внешнее магнитное поле имеет одно и то же значение в любой точке поверхности образца. В частности для очень длинного и тонкого цилиндра с осью, направленной вдоль поля. Если же образец имеет другую форму, то картина перехода в нормальное состояние выглядит намного сложнее.
Переход из нормального в сверхпроводящее состояние является фазовым переходом. Промежуточное состояние представляет собой гетерогенную смесь сверхпроводящей и нормальной фаз. Как показал Л.Д.Ландау, промежуточное состояние сверхпроводника должно представлять сложную, разветвлённую систему прослоек обеих фаз. Согласно этой теории в интервале полей с индукцией
сверхпроводящие и нормальные области сосуществуют, где В1 – индукция внешнего магнитного поля, в тот момент, когда в какой-либо точке образца поле становится равным критическому. Идеализированная картина такого состояния представляет собой чередующиеся S- и N-полосы, реально же эта ситуация намного сложнее. Здесь картина не статична, соотношение между количеством S- и N- областей непрерывно меняется. С ростом поля сверхпроводящая S-фаза «тает» за счет роста N-областей и при индукции В = Вк исчезает полностью.С ростом поля наступает момент, когда оно становится равным критическому в каком-нибудь одном месте поверхности образца. Например, выталкивание магнитного поля из шара приводит к сгущению силовых линий в окрестности экватора. Такое расположение поля является следствием наложения на равномерное внешнее поле с индукцией В0 магнитного поля, создаваемого экранизирующими токами. Очевидно, распределение магнитных силовых линий обусловлено геометрией образца. Для простых тел этот эффект можно характеризовать одним числом, так называемым коэффициентом размагничивания N.
Если, например, тело имеет форму эллипсоида, то на его экваторе поле станет равным критическому, когда внешнее поле будет равно В0 = Вк × (1 - N). Для шара коэффициент размагничивания равен N =
, поэтому на экваторе поле будет равным критическому при индукции В0 = × Вк. При дальнейшем увеличении поля сверхпроводимость у экватора должна разрушиться. Однако весь шар не может перейти в нормальное состояние, так как в этом случае магнитное поле проникло бы внутрь образца и стало бы равно внешнему полю, то есть оказалось бы меньше критического. Поэтому наступает частичное разрушение сверхпроводимости, – образец расслаивается на нормальные и сверхпроводящие области. В случае тел более сложной формы разрушение сверхпроводимости происходит путём «распада» на малые области (домены) из сверхпроводящей и нормальной фаз. Граница раздела сверхпроводящей и нормальной областей имеет поверхностную энергию.Образование промежуточного состояния со слоями конечной толщины свидетельствуют о том, что граница нормальной и сверхпроводящей фаз обладает дополнительной положительной поверхностной энергией. Наличие такой энергии следует также и из скачкообразности перехода массивного сверхпроводника при цилиндрической геометрии: критическое поле в тонких слоях выше, чем в массивных образцах, поэтому цилиндру было бы энергетически выгодно разбиться на тонкие слои, утончающиеся по мере увеличения поля; однако этого не происходит, так как с границами фаз связана добавочная энергия. Согласно современным представлениям, эта поверхностная энергия является следствием пространственной корреляции электронов.
Рассмотрим границу нормальной и сверхпроводящих фаз. В сверхпроводящей фазе энергетическая щель Δ имеет конечное значение (соответствующее данной температуре), в нормальной фазе она должна равняться нулю; изменение величины Δ происходит на расстоянии ~ ξ. Нормальная фаза может находиться в равновесии со сверхпроводящей только в том случае, если в нормальной фазе имеется магнитное поле Нк, отсутствующее в сверхпроводящей фазе. Изменение поля от Нк до 0 по мере углубления в сверхпроводящую фазу происходит на расстоянии ~ δ. Если заменить плавное изменение Δ и Н ступенчатым, сохранив величину свободной энергии и магнитного потока, возникают две условные границы: по щели (линия А) и по полю (линия В), причём на участке АВ как щель, так и поле равны нулю. Равенство нулю щели означает, что этот участок находится в нормальном состоянии, а отсутствие поля (необходимого для равновесия со сверхпроводящей фазой), - что этот участок обладает дополнительной энергией. На 1 см3 приходится Нк2/8π, а на 1 см2 площади переходного слоя – (Нк2/8π) АВ ~ ξ Нк2/8π. При ξ>δ поверхностная энергия положительна, при δ>ξ линии А и В расположены в другом порядке и поверхностная энергия отрицательна. Здесь ξ~ђυF/Δ(Т). Эта величина в окрестности Тк меняется по тому же закону, что и δ, т.е. поверхностная энергия может быть положительной даже в том случае, когда δ>>ξ0=ђυF/Δ(0) и электродинамика сверхпроводника описывается уравнением Лондонов.