Смекни!
smekni.com

Явление сверхпроводимости (стр. 6 из 17)


Рис. 6

На рис. 7 показана схематическая модель куперовской пары. Она состоит из двух электронов, движущихся вокруг индуцированного положительного заряда, напоминая в какой-то мере атом гелия. Каждый электрон, входящий в пару, может обладать большим импульсом

и волновым вектором
; пара же в целом (центр масс пары) может при этом покоиться, обладая нулевой скоростью поступательного движения. Это разъясняет непонятное на первый взгляд свойство электронов, заселяющих верхние уровни заполненной части зоны проводимости при наличии щели (рис.6а). У таких электронов
и
огромны (
и
), а скорость поступательного движения
. Поскольку центральный положительный заряд пары индуцирован самими движущимися электронами, то под действием внешнего поля куперовская пара может свободно перемещаться по кристаллу, а энергетическая щель Ещ смещаться вместе со всем распределением, как показано на рис. 6б. Таким образом, и с этой точки зрения удовлетворяются условия появления сверхпроводимости.

Рис.5 рис. 7

Однако не все электроны зоны проводимости способны связываться в куперовские пары. Так как этот процесс сопровождается изменением энергии электронов, то связываться в пары могут лишь те электроны, которые способны изменять свою энергию. Таковыми являются только электроны, размещающиеся в узкой полоске, расположенной у уровня Ферми («фермиевские электроны»). Грубая оценка показывает, что число таких электронов составляет ~ 10-4 от общего числа, а ширина полоски по порядку величины равна 10-4

.

На рис. построена в пространстве импульсов сфера Ферми радиусом

.

Рис. 8


На ней проведены кольца шириной dl, расположенные относительно оси ру под углами φ1, φ2, φ3. электроны, векторы

которых своими концами попадают на площадь данного кольца, образуют группу, обладающую практически одинаковым импульсом
. Число электронов в каждой такой группе пропорционально площади соответствующего кольца. Так как с ростом φ площадь колец увеличивается и число электронов в соответствующих им группах. Связываться в пары могут, вообще говоря, электроны любой из этих групп. Максимальное же число пар образуют те электроны, которых больше. А больше всего электронов, у которых импульсы равны по величине и противоположны по направлению. Концы векторов
у таких электронов располагаются не на узкой полоске, а по всей поверхности Ферми. Этих электронов так много по сравнению с любыми другими электронами, что практически образуется лишь одна группа куперовских пар – пары, состоящие из электронов, имеющих равные по величине и противоположные по направлению импульсы. Замечательной особенностью этих пар является их импульсная упорядоченность, состоящая в том, что центры масс всех пар имеют одинаковый импульс, равный нулю, когда пары покоятся, и отличный от нуля, но одинаковый для всех пар, когда пары движутся по кристаллу. Это приводит к довольно жёсткой корреляции движения каждого отдельного электрона с движением всех остальных электронов, связанных в пары.

Электроны «движутся наподобие альпинистов, которые связаны друг с другом верёвкой: если один из них выходит из строя благодаря неровности рельефа (обусловленной тепловым движением атомов), то соседи возвращают его обратно».[29, С. 34] Это свойство делает коллектив куперовских пар мало восприимчивым к рассеянию. Поэтому если пары тем или иным внешнем воздействием приведены в упорядоченное движение, то созданный ими электрический ток может существовать в проводнике сколь угодно долго даже после прекращения действия того фактора, который его вызвал. Так как таким фактором может быть только электрическое поле Е, то это означает, что в металле, в котором фермиевские электроны связаны в куперовские пары, возбуждённый электрический ток i продолжает существовать неизменным и после прекращения действия поля: i=const при Е=0. Это является свидетельством того, что металл действительно находится в сверхпроводящем состоянии, обладая идеальной проводимостью. Грубо такое состояние электронов можно сравнить с состоянием тел, движущихся без трения: такие тела, получив начальный импульс, могут двигаться сколь угодно долго, сохраняя его неизменным.

Выше мы сравнивали куперовскую пару с атомом гелия. Однако к этому сравнению следует относится очень осторожно. Как уже отмечалось, положительный заряд пары является непостоянным и строго фиксированным, как у атома гелия, а наведённым самими движущимися электронами и перемещающимися вместе с ними. Кроме того, энергия связи электронов в паре на много порядков ниже энергии связи их в атоме гелия. Согласно данным таблицы 1, для куперовских пар Есв=(10-2-10-3) эВ, в то время как для атомов гелия Есв=24,6 эВ. Поэтому размер куперовской пары на много порядков больше размера атома гелия. Расчёт показывает, что эффективный диаметр пары L ≈ (10-7-10-6) м; его называют также длиной когерентности. В объёме L3, занимаемой парой, размещаются центры массы ~ 106 других таких пар. Поэтому эти пары нельзя рассматривать как какие-то пространственно разделённые «квазимолекулы». С другой стороны, возникающее колоссальное перекрытие волновых функций всех пар усиливает квантовый эффект спаривания электронов до макроскопического его проявления.

Существует другая аналогия, причём очень глубокая, куперовских пар с атомами гелия. Она состоит в том, что пара электронов представляет собой систему с целом спином, так же как и атомы

. Известно, что сверхтекучесть гелия можно рассматривать как проявление специфического эффекта конденсации бозонов на нижнем энергетическом уровне. С этой точки зрения сверхпроводимость можно считать как бы сверхтекучестью куперовских пар электронов. Эта аналогия идёт ещё дальше. Другой изотоп гелия
, ядра которого имеют полуцелый спин, не обладает сверхтекучестью. Но самый замечательный факт, открытый совсем недавно, состоит в том, что при понижении температуры атомы
могут образовывать пары, вполне аналогичные куперовским, и жидкость становится сверхтекучей. Теперь можно сказать, что сверхтекучесть
- это как бы сверхпроводимость пар его атомов.

Таким образом, процесс спаривания электронов является типичным коллективным эффектом. Силы притяжения, возникающие между электронами, не могут привести к спариванию двух изолированных электронов. В образовании пары участвует по существу как весь коллектив фермиевских электронов, так и атомы решётки. Поэтому и энергия связи (ширина щели Ещ) зависит от состояния коллектива электронов и атомов в целом. При абсолютном нуле, когда все фермиевские электроны связаны в пары, энергетическая щель Ещ достигает максимальной ширины Ещ(0). С повышением температуры появляются фононы, способные сообщить электронам при рассеянии энергию, достаточную для разрыва пары. При низких температурах концентрация этих фононов невелика, вследствие чего и случаи разрыва электронных пар будут редкими. Разрыв некоторых пар не может привести к исчезновению щели для электронов остальных пар, но делает её несколько уже; границы щели приближаются к уровню Ферми. С дальнейшим повышением температуры концентрация фононов растёт очень быстро, кроме того, растёт их средняя энергия. Это приводит к резкому увеличению скорости разрыва электронных пар и соответственно к быстрому уменьшению ширины энергетической щели для остающихся пар. При некоторой температуре Тк щель исчезает полностью, края её сливаются с уровнем Ферми и металл переходит в нормальное состояние.[6,С.183]


2.5 Эффективное взаимодействие между электронами, обусловленное фононами металла

Фрелих показал, что взаимодействие электронов с фононами может приводить к эффективному взаимодействию между электронами. Ниже мы изложим основные положения его теории.

В идеальной решётке движение электрона в зоне проводимости определяется блоховской функцией

, (19)

которая представляет плоскую волну, модулированную функцией uk(r), удовлетворяющей условию периодичности uk(r) = uk(r+n), где n – вектор решётки, k – волновой вектор; χσ – функция спинового состояния. Её явный вид и вид функции uk(r) нам далее не потребуется.