3.3 Сверхпроводимость и энергетика
Одной из наиболее острых и важных проблем, решаемых сегодня наукой, является проблема осуществления управляемой термоядерной реакции. Есть веские основания полагать, что успешное решение этой проблемы, которая сулит человечеству неисчерпаемые источники энергии, возможно при использовании мощных магнитов. Уже сейчас обсуждаются технические, экономические и даже экологические показатели будущих термоядерных реакторов различных типов. Наибольшее развитие достигли установки типа «Токамак», где используется сверхпроводящая магнитная система. Они представляются наиболее перспективными на ближайшие годы. Именно на этих установках, широко развивающихся в нашей стране, удалось объединить высокую температуру плазмы (до 80 млн. градусов), её высокую плотность (до 1015 частиц в 1 см3) и значительное время удержания (до 0,1 с).
Термоядерный реактор ещё не работает, но проведённые исследования и разработки стимулировали развитие нового типа производства энергии с помощью магнитогидродинамических генераторов (МГД-генераторов). МГД-генератор предназначен для прямого преобразования тепловой энергии в электрическую. Проводником, пересекающем магнитное поле, является низкотемпературная плазма - газ, нагретый до температуры 2500°С и содержащей добавки легкоионизирующихся веществ (для повышения электропроводности). Когда такой газ с достаточно большой скоростью проходит в специальном канале через сильное магнитное поле, возникает ЭДС. Если электроды, соответствующим образом расположены вдоль плазменного канала, соединить с нагрузкой, то ЭДС создает ток в направлении, перпендикулярном движению газа и силовым линиям магнитного поля, способный совершать работу.
В МГД – генераторе движение газа осуществляется за счет собственного расширения, то есть без применения какого – либо двигателя. В канале МГД – генератора вообще нет движущихся частей, и поэтому материал, из которого сделаны наиболее ответственные элементы, не испытывает сколько-нибудь значительных механических усилий. В этом и состоит одно из важных преимуществ преобразования энергии. Магнитная система для наиболее распространенного типа МГД-генератора, так называемого линейного генератора, подобно отклоняющему магниту, используемому в ускорительной техники. Но размеры магнитной системы крупной МГД-электростанции должны быть значительно больше, чем магнитных систем, создаваемых для любых иных целей. Так, у МГД-генератора мощностью порядка 500МВт сечение канала, в котором создается магнитное поле, будет составлять несколько квадратных метров при длине более 10м. Запасенная в магнитном поле энергия может превышать 1010 Дж.
Сверхпроводящий соленоид можно использовать в качестве накопителя энергии для получения очень мощных энергетических импульсов. Магнитное поле с напряжённостью Н = 107а/м имеет объёмную плотность энергии 62,5 Мдж/м3, в то время как в батареях конденсаторов можно накапливать энергию с объёмной плотностью 0,3 Мдж/м3. мощные сверхпроводящие накопители весьма перспективны не только для питания импульсных нагрузок, но и для регулирования производства и потребления электроэнергии в целых энергосистемах. Они могут изменить энергетику, сделать потребителей более независимыми от источников тока, упростить управление, контроль и защиту оборудования.
С ростом потребляемых мощностей всё острее становится проблема передачи энергии. Идея создания сверхпроводящих кабелей укреплялась в острой научной борьбе. Основная трудность, которая возникает при прокладке сверхпроводящего кабеля, - тепловая защита сверхпроводника. Предохранить кабель от большого притока из вне можно с помощью вакуумной изоляции. Кабель имеет вид многослойной трубы, и, в сущности, представляет собой длинный криостат. Поперечное сечение такого кабеля схематично показано на рисунке 15.
Рис 15
Внутренняя труба диаметром около 70 мм, покрытая слоем сверхпроводящего материала толщиной около 0,3 мм, заполнена жидким гелием, который гонят по ней насосы. В качестве сверхпроводника может быть использован, например сплав ниобия, титана, циркония. Между первой и второй трубами вакуумная изоляция, между второй и третьей течёт жидкий азот, между третьей и четвёртой (наружной) опять вакуумная изоляция.
Несмотря на простоту конструкции, монтаж такой линии сопряжён со значительными трудностями. Надо обеспечить герметичность кабеля, научиться собирать его из отдельных коротких отрезков, разработать рефрижераторы, концевые устройства, компенсаторы деформаций и другое оборудование. «Холодные» линии должны выдерживать перегрузки и аварийные режимы, поэтому важно совершенствовать и стабилизацию линий.
Сейчас опытные сверхпроводящие кабели проектируются и строятся во многих странах мира. У нас в стране, создан и испытан отрезок кабеля длиной 50 м из Nb3Sn, рассчитанный на силу тока 8 кА и напряжение 10кВт, т.е. на мощность, равную примерно 0,8 ГВт. Подобные кабели мощностью до 5 ГВт испытываются в США и Японии. Расчёты показывают, что уже в настоящее время при всей сложности поддержания гелиевых температур передачу высоких электрических мощностей на десятки тысяч километров экономически выгоднее вести, используя явление сверхпроводимости.
Итак, сверхпроводники могли бы не только качественно изменить электротехнику, повысить эффективность электроэнергетики, но и помочь решению экологической проблемы – загрязнения атмосферы нашей планеты. Увеличение до грандиозных размеров производства энергии за счёт использования природного топлива может привести в конечном счёте к повышению средней температуры земного шара, а следовательно, и атмосферы. Сверхпроводниковая энергетика, конечно не решает проблемы теплового загрязнения планеты, но может её смягчить. Отсутствие электрического сопротивления дало бы не только колоссальный экономический эффект, но и позволило бы значительно снизить потери тепловой энергии без какого-либо ущерба для энергоёмкости промышленных объектов.
3.4 Магнитные подвесы и подшипники
Сверхпроводник, в толщу которого не проникает магнитное поле, всегда окружён «магнитной подушкой» и характеризуются механическим отталкиванием. Это явление используется в настоящее время для создания опор без трения. Сверхпроводящая сфера висит над кольцом, в котором циркулирует незатухающий ток. Происходит это благодаря диамагнетизму сверхпроводников. Сила тяжести сферы уравновешивается «магнитной подушкой», создаваемой сверхпроводящим током. Парить таким образом, как выяснилось, могут довольно тяжёлые предметы. Это явление называется магнитной левитацией.
Если опустить сверхпроводящий диск на сверхпроводящую катушку, в которой течёт незатухающий ток, то можно получить различные устройства, которые позволяют обеспечить устойчивую подвеску в одном, двух или трёх направлениях. Особенно они удобны в тех случаях, когда тело, подвешенное в магнитном поле, должно вращаться с большим числом оборотов. Таким путём можно получить подшипники, практически не обладающие трением, вплоть до максимальных скоростей вращения. Верхний предел числа оборотов ограничивается лишь механической прочностью материала ротора. В одной из моделей ниобиевый ротор в форме шестигранника удалось раскрутить меняющимся полем до 20 тыс. оборотов в минуту. Принцип механического отталкивания положен в основу создания электрических машин, к.п.д. которых благодаря свойствам сверхпроводников близок к 100%, а также транспорта на магнитной подвеске.
Платформы с магнитной подвеской привлекательны во многих отношениях: отсутствие шума при движении, плавность хода, устранение вибраций и др. Здесь используется следующий принцип. В отдельных вагонах поезда устанавливаются катушки, создающие довольно сильное магнитное поле (рис 16). Поездной электромагнит 1 делают сверхпроводящим. Он охлаждается жидким и газообразным гелием. При движении поезда в алюминиевых полосах-рельсах 2 наводятся вихревые токи, которые по правилу Ленца создают магнитное поле, направленное на встречу вызвавшему их магнитному полю, в нашем случае полю магнитов, расположенных в поезде. Это поле и создаёт силу отталкивания. Поезд – вагон приподнимается над эстакадой электромагнитными силами. Горизонтальная часть полосы – рельса 3 создаёт при этом подъёмную силу, а вертикальная обеспечивает боковую устойчивость поезда. Между шинами – полосами проложен третий рельс-линейный двигатель, который и приводит поезд в движение. В сверхпроводящих опорах подъёмная сила при поле с индукцией 1 Тл может достигать 4*105 Н на квадратный метр, что примерно равно давлению воздуха в шинах автобуса. Вполне реально увеличить магнитное поле в 2…3 раза.
Рис. 16
Сверхпроводники могут оказать большую услугу не только наземному транспорту, но и подводным кораблям. При стеснённых габаритах и ограниченном водоизмещении на корабле можно установить лёгкие, компактные и в то же время мощные генераторы и двигатели (МГД-двигатели).
В настоящее время космонавты часто оказываются в зоне повышенной радиации. Для защиты от неё необходимо магнитное поле, искривляющее траекторию заряженных частиц и «уводящее» радиацию. С этой целью на космических кораблях должна находиться установка, создающая магнитную защиту с помощью сверхпроводящих соленоидов. Кроме этого соленоиды используются и для торможения корабля при входе его в плотные слои атмосферы. Торможение возникает в результате взаимодействия магнитного поля, движущегося вместе с кораблём, с ионизированным газом, возникающим в результате трения обшивки о воздух.[2,С.125]
В космических аппаратах, самолётах, на кораблях, подводных лодках, в системах навигации используют гирокомпасы основу их составляет гироскоп – быстро вращающийся волчок, который сохраняет неизменным своё положение в пространстве. Погрешность гирокомпаса зависит главным образом от трения в подшипниках. Уже эксплуатируются сверхточные гироскопы, в которых ниобиевый шарик, висящий в магнитном поле, после получения импульса может вращаться без трения в течение весьма длительного времени. За сутки дрейф таких гироскопов достигает примерно 20.