Оценка полей, до которых сохраняется сверхпроводимость, может быть получена из следующих соображений. Куперовское спаривание сохраняется, если ларморовский радиус rH закручивания пары в магнитом поле не меньше размеров пары. Т.о., предельное соотношение имеет вид:
где рП – импульс пары. Подставляя сюда предельный импульс пары, который имеет порядок ђ/ξ1 , получаем значение поля перехода:
Т.о.,
где Нк – термодинамическое поле.
Полная картина перехода из сверхпроводящего состояния в нормальное для сверхпроводников 2-го рода имеет следующий вид (рис. 10). Внешнее магнитное поле совершенно не проникает в толщу массивного сверхпроводника вплоть до критического поля
Согласно формулам (62,66)
Рис 10. Зависимость намагниченности (-4πM=H-B,
Кривая
Когда расстояние между центрами становится порядка δ/χ, уже нельзя говорить об отдельных нитях – имеет место некоторая периодическая структура распределения полей и токов в сверхпроводнике (рис 11). При дальнейшем увеличении внешнего поля центры перестают сближаться, поле в образце постепенно достигает величины внешнего поля, вся толща образца переходит в нормальное состояние. Это происходит при
Теоретический предел для полей
Большая величина критических полей делает сверхпроводники 2-го рода подходящим материалом для изготовления сверхпроводящих магнитов.
Рис. 11
Критические поля выше 100000 э получены на опыте в сплавах Nb – Sn, Nb – Zr, Ti – V b и др.
Описанные представления и точные теоретические формулы относятся, строго говоря, только к образцам с достаточно однородным распределением дефектов. Реально сверхпроводящие сплавы обычно обладают значительными неоднородностями. Это появляется прежде всего в необратимости кривой для магнитного момента: появляются гистерезис намагничивания и остаточный момент в нулевом поле. Неоднородные сплавы можно гомогенизировать с помощью длительного отжига при высокой температуре. При этом гистерезис уменьшается и кривая намагничивания всё больше приближается к теоретической. Величина
2.9 Термодинамика сверхпроводимости
При переходе в сверхпроводящее состояние изменение энергии определяется эффектом Мейсснера и равно энергии магнитного поля, вытесняемого из сверхпроводника. Следовательно,
Fn - Fs = Hk2 / 8π, (67)
где Fn – свободная энергия нормального состояния, Fs – свободная энергия сверхпроводящего состояния. Данная формула является основной в термодинамике фазового перехода из нормального в сверхпроводящее состояние.
Энтропия S = -dF/dT. Разность энтропий нормальной и сверхпроводящей фаз равна
Sn – Ss = - Hk dHk / 4π dT. (68)
Производная dHk /dT всегда отрицательна, поэтому энтропия сверхпроводящей фазы меньше или равна (в точке перехода Hk = 0) энтропии нормальной фазы. Изотермическое разрушение сверхпроводимости магнитным полем сопровождается поглощением тепла q = T (Sn – Ss). Получим,
q = - T* Hk dHk / 4π dT (69)
В отсутствии магнитного поля (Hk=0) теплота превращения q=0, так как при Tk производная dHk /dT сохраняет конечное значение. Переход в сверхпроводящее состояние в этом случае является фазовым переходом 2 рода. В магнитном поле этот переход сопровождается поглощением тепла, а обратный – выделением тепла и является фазовым переходом 1 рода.
Теплоёмкость c = T (dS/dT). Разность теплоёмкостей сверхпроводящей и нормальной фаз:
Δc = Tk * (dHk/dT)2/4π + T Hk * (d2Hk / dT2)/4π. (70)
В отсутствии магнитного поля, то есть при Т=Тк, получим (формула Рутгерса)
Δc = Tk * (dHk/dT)2/4π, (71)
откуда следует, что в точке превращения теплоёмкость меняется скачком.
Теплоёмкость сверхпроводника, так же как и нормального металла, слагается из электронной Се и решёточной Сg компонент. Для нормального металла при низких температурах
при Т <<Tk.
при (Тк-Т)<<Tk.