Смекни!
smekni.com

Развитие Вселенной (стр. 2 из 4)

Другие галактики.

Во Вселенной кроме спиральных галактик существуют другие виды: эллиптические, галактики с перемычкой, карликовые, неправильные и другие.
Галактики объединяются в скопления, которые могут включать в себя несколько сотен галактик. Эти скопления, в свою очередь, могут объединяться в сверхскопления. Наша Галактика принадлежит к Местной (Локальной) группе, куда входит и созвездие Андромеды. Всего в Местной группе около 40 галактик, а сама она входит в сверхскопление Девы. Так что наша огромная галактика Млечный путь с миллиардами звезд является всего лишь небольшим островком в необозримом океане Вселенной.

ЗВЕЗДЫ.

Звездные последовательности – стадии эволюции звезд

Эволюцию даже одной звезды нельзя проследить в течение жизни нескольких поколений людей. Жизнь самых короткоживущих звезд исчисляется миллионами лет. Человечество столько не живет. Поэтому возможность проследить звездную эволюцию от начала – рождения звезды – до ее конца заключается в сравнении химических и физических характеристик звезд на разных стадиях развития.

Главным показателем физических свойств звезды является ее светимость и цвет. По этим характеристикам звезды объединили в группы, которые называются последовательностями. Их несколько: главная последовательность, последовательность сверхгигантов, ярких и слабых гигантов. Есть еще субгиганты, субкарлики и белые карлики.

Эти смешные названия отражают разные стадии состояния звезды, которые она проходит в процессе своей эволюции. Два астронома Герцшпрунг и Рессел составили диаграмму, которая связывает температуру поверхности звезды с ее светимостью. Температура звезды определяется по ее цвету. Оказалось, что самые горячие звезды – голубые, самые холодные – красные. Когда Герцшпрунг и Рессел расположили на диаграмме звезды с известными физическими характеристиками – светимость-цвет (температура), то оказалось, что они располагаются группами. Получилась довольно веселая картинка, где место звезды на ней определяло, на каком этапе эволюции находится эта звезда.

Больше всего звезд (почти 90%) оказалось на главной последовательности. Значит, основную часть своей жизни звезда проводит именно в этом месте диаграммы. На диаграмме также видно, что самые мелкие звезды – карлики – находятся внизу, а самые большие – сверхгиганты - вверху.

Три пути развития эволюции звезд

Время, отпущенное для жизни звезде, определяется, прежде всего, ее массой. Масса звезды также определяет и то, во что она превратится, когда перестанет быть ею. Чем больше масса, тем короче жизнь звезды. Самые массивные – сверхгиганты – живут всего несколько миллионов лет, тогда как большинство звезд средней упитанности – приблизительно 15 млрд. лет.

Все звезды, после того, как заканчивается источник энергии, благодаря которому они живут – горят ярким пламенем, начинают тихо остывать, уменьшаться в размерах и сжиматься. Сжимаются они до состояния массивного компактного объекта с очень высокой плотностью: белого карлика, нейтронной звезды и черной дыры.

Звезды с небольшой массой выдерживают сжатие, так как гравитация относительно невелика. Они прессуются до небольшого белого карлика и остаются в этом стабильном состоянии до тех пор, пока их масса не увеличится до критического значения.

Если масса звезды больше критического значения, то она продолжается сжиматься до тех пор, пока электроны не «слипнутся» с протонами, образуя нейтронное вещество. Таким образом, получается небольшой нейтронный шар радиусом несколько километров – нейтронная звезда.

Если масса звезды настолько огромна, что гравитация продолжает сжимать даже нейтронное вещество, то происходит гравитационный коллапс, после чего на месте гигантской звезды образуется черная дыра.

Что такое белый карлик? То, что не стало нейтронной звездой или черной дырой.

Это то, во что превращаются средние и малые звезды в конце своей эволюции. Термоядерные реакции уже закончились, однако, они остаются очень горячими плотными газовыми шарами. Звезды медленно остывают, светясь ярким белым светом. Участь белого карлика ожидает и наше Солнце, так как его масса ниже критической. Критическая масса равна 1,4 массы Солнца. Это значение называется пределом Чандрасекара. Чандрасекар – индийский ученый астроном, который рассчитал это значение.

Состоянием нейтронной звезды заканчивается эволюция таких звезд, массы которых превышает солнечную в несколько раз. Нейтронная звезда возникает в результате вспышки сверхновой. При массе в 1,5-2 раза больше солнечной, она имеет радиус 10-20 км. Нейтронная звезда быстро вращается и периодически испускает потоки элементарных частиц и электромагнитное излучение. Такие звезды называются пульсарами. Состояние нейтронной звезды также определяется ее массой. Предел Оппенгеймера-Волкова – величина, определяющая максимально возможную массу нейтронной звезды. Чтобы находиться стабильно в таком состоянии, необходимо, чтобы ее масса не превышала трех солнечных масс.

Если масса нейтронной звезды превосходит это значение, то чудовищная сила гравитации так сжимает ее в объятиях коллапса, что она становится черной дырой.

Черная дыра – это то, что получается, когда гравитационное сжатие массивных тел неограниченно, т.е. когда звезда сжимается до такой степени, что становится абсолютно невидимой. Ни один луч света не может покинуть ее поверхность. И здесь также есть показатель, определяющий состояние космического объекта в качестве черной дыры. Это гравитационный радиус, или радиус Шварцшильда. Еще его называют горизонтом событий, так как описать или увидеть, что происходит внутри сферы с таким радиусом на месте сколапсированной звезды, невозможно.

Может быть, внутри это сферы есть прекрасные яркие миры или выход в другую Вселенную. Но для простого наблюдателя это просто провал в пространстве, который закручивает вокруг себя свет, идущий от других звезд и поглощает космическое вещество. По тому, как ведут себя рядом с ней другие космические объекты, мы можем делать предположения об ее свойствах.

Например, можно предположить, что самые массивные черные дыры, находятся в том месте, где наблюдается самое яркое свечение звездных скоплений. Притягивая к себе звездное вещество и другие космические объекты, черные дыры заставляют их светиться, окружая себя, ярким светящимся ореолом - квазаром. Тьма не может существовать без света, а свет существует благодаря тьме. Это доказывает эволюция звезд.