Движение электронов в атомах Бор представлял как простое механическое, однако, оно является сложным и своеобразным. Это своеобразие было объяснено новой квантовой теорией. Отсюда и пошло: «Карпускулярно-вролновой дуализм».
И так, электрон в атоме характеризуется:
1.Главным квантовым числом n, указывающим на энергию электрона;
2.Орбитальным квантовым числом l , указывающим на характер орбиты;
3.Магнитным квантовым числом, характеризующим положение облаков в пространстве;
4.И спиновым квантовым числом, характеризующим веретенообразное движение электрона вокруг своей оси. [ 1, 4 ]
Химики XIXв. Не в состоянии были ответить на вопрос, в чем суть различий между атомами разных элементов, например меди и йода. Лишь в период 1897-1911гг. удалось установить, что сами атомы состоят из еще более мелких частиц. Открытие этих частиц и исследование строения атомов – того, каким образом построены атомы разного вида из более мелких частиц, - одна из наиболее интересных страниц истории науки. Более того, знание строения атомов позволило затем провести исключительно успешную систематизацию химических фактов, а это сделало химию более легкой для понимания и усвоения. Величайшую помощь каждому, изучающему химию, окажет, прежде всего, ясное представление о строении атома.
Частицы, из которых состоят атомы, - это электроны и атомные ядра. Электроны и атомные ядра несут электрические заряды, которые в значительной степени обуславливают свойства самих частиц и строение атомов.
Название «электрон» происходит от греческого слова ἤλεκτρον, означающего «янтарь»: ещё в древней Греции естествоиспытателями проводились эксперименты — куски янтаря тёрли шерстью, после чего те начинали притягивать к себе мелкие предметы. Термин «электрон» как название фундаментальной неделимой единицы заряда в электрохимии был предложен[3] Дж. Дж. Стоуни (англ.) в 1894 (сама единица была введена им в 1874). Открытие электрона как частицы принадлежит Дж. Дж. Томсону, который в 1897 установил, что отношение заряда к массе для катодных лучей не зависит от материала источника.
2.2 Свойства электрона
Электрон представляет собой частицу с отрицательным зарядом величиной –0,1602 10-18 Кл. Масса электрона равна 0,9108 10-30кг, что составляет 1/1873 массы атома водорода.Электрон имеет очень небольшие размеры. Радиус электрона точно не определен, но известно, что он значительно меньше 1·10-15м.
В 1925г. было установлено, что электрон вращается вокруг собственной оси и что он имеет магнитный момент. [5]
Число электронов в электронейтральном атоме закономерно повышается при переходе элемента от Z к Z + 1. Эта закономерность подчиняется квантовой теории строения атома.
Максимальная устойчивость атома, как системы электрических частиц, отвечает минимуму его полной энергии. Потому электроны при заполнении энергетических уровней в электромагнитном поле ядра будут занимать (застраивать) в первую очередь наиболее низкий из них (К – уровень; n=1). В электронейтральном невозбужденном атоме электрон в этих условиях имеет наименьшую энергию (и, соответственно, наибольшую связь с ядром). Когда К – уровень будет заполнен (1s2 – состояние, характерное для атома гелия), электроны начнут застраивать уровень L (n = 2), затем M – уровень (n=3). При данном n электроны должны застраивать сначала s-, затем p-, d- и т. д. подуровни.
Однако, как показывает рис. 3, энергетические уровни в атоме элемента не имеют ясных грани. Более того, здесь наблюдается даже взаимное перекрывание энергий отдельных подуровней. Так, например, энергетическое состояние электронов в подуровнях 4sи 3d, а так же 5sи 4dочень близки между собой, а 4s1 и 4s2 – подуровни отвечают более низким значениям энергии, чем 3d. Поэтому электроны, застраивающие, M- и N- уровни, в первую очередь попадут на 4s – оболочку, которая относится к внешнему электронному слою N (n=4), и лишь по ее заполнении (т. е. после завершения построения оболочки 4s2) будут размещаться в 3d – оболочке, относящейся к предвнешнему слою M (n=3). Аналогичное наблюдается и в отношении электронов 5s- и 4d – оболочек. Еще более своеобразно идет заполнение электронами f – оболочек: они при наличии электронов на внешнем уровне n (при n, равном 6 или 7) застраивают уровень n=2, т. е. предпревнешний слой, - пополняют оболочку 4f (при n=6) или соответственно оболочку 5f (при n=7).
Обобщая, можно высказать следующие положения.
1. Уровни ns, (n-1)d и (n-2)f близки по энергии и лежат ниже уровня np.
2. С увеличением числа электронов в атоме (по мере повышения величины Z) d – электроны «запаздывают» в построении электронной оболочки атома на один уровень (застраивают предвнешний слой, т. е. уровень n-1), а f – электроны запаздывают на два уровня: достраивают второй снаружи (т. е. предвнешний) слой n – 2. Появляющиеся f – электроны часто как бы вклиниваются между (n-1)d1 и (n-1)d2¸10 – электронами.
Во всех указанных случаях n – номер внешнего уровня, на котором уже содержатся два электрона (ns2 – электроны), причем n одновременно и номер того периода по таблице Менделеева, который включает данный элемент.
Элементы, в атомах которых при наличии электронов во внешнем слое n (ns2 – электроны) идет достройка одного из подуровней (3d, 4d, 4f, 5dили 5f), находящихся на предвнешних слоях (n-1) или (n-2), называются переходными.
Общая картина последовательности заполнения электронами оболочек атомов элементов, принадлежащих к периоду n, имеет вид: