Смекни!
smekni.com

Современные методы диагностики тяговых трансформаторов железных дорог и построение экспертной системы для обработки результатов тепловизионной диагностики тяговых трансформаторов ВСЖД (стр. 14 из 25)

В отдельных случаях для углубленного анализа состояния работающего маслонасоса полезно знать его ток потребления, осуществлять акустические измерения на его корпусе с помощью ультразвукового дефектоскопа.

в) Вентиляторы

Локальные нагревы электродвигателей вентиляторов могут быть обусловлены дефектами подшипников, температура нагрева которых не должна превышать 80°С или витковыми замыканиями в обмотках.

Повышенные (по сравнению с другими электродвигателями) нагревы электродвигателя могут быть связаны работой его с перегрузкой в результате чрезмерного угла атаки крыльчатки, большим аэродинамическим сопротивлением входа воздуха в охладитель, забор воздуха из невентилируемой зоны, подверженной постороннему тепловому воздействию и тому подобное.

В сомнительных случаях, в качестве дополнительных критериев рекомендуется проверять зазор между крыльчатками вентиляторов и диффузорами по всему периметру, который должен быть равномерным и не превышать 1,5% диаметра рабочего колеса. Вибрация электродвигателя, измеренная в трех точках не должна превышать 0,06 мм. В противном случае рекомендуется проверить биение крыльчаток в осевом направлении. Если позволяет конструкция охладителя, может быть осуществлено измерение разности температур воздуха на входе и выходе вентиляторов охладителей и проведен их сравнительный анализ.

г) Охладители

Применительно к системам охлаждения трансформаторов различают проверку работоспособности охладителей и оценку их эффективности. Работоспособность систем охлаждения с помощью тепловизора может определяться как no-узловой проверкой отдельных элементов (маслонасосы, вентиляторы, радиаторы), так и системы в целом и производится при нагрузке определяемой режимом работы трансформатора на период его тепловизионного обследования.

Для проверки работоспособности охладителей определяется с помощью тепловизора температура масла на входе и выходе из охладителей (на поверхностях труб примыкающих к стенке бака трансформатора). По результатам измерений, определяется значение ∆Тохл (разница температуры масла на входе и выходе из охладителя) для каждого из охладителей и осуществляется их сравнительный анализ.

Оценка эффективности работы охладителей требует сопоставления измеренных значений ∆Тохл с расчетными параметрами, заложенными заводом в процессе проектирования трансформатора.

д) Поверхности бака трансформатора

Сроки проведения тепловизионного обследования баков трансформаторов регламентированы Объемами и Нормами испытаний электрооборудования, но могут быть существенно сокращены при получении неудовлетворительных результатов при измерении тока и потерь холостого хода, напряжения короткого замыкания, выявления аномальных нагревов стенок бака или болтов крепления разъема колокола и тому подобное.

Если перед проведением тепловизионного обследования, трансформатор работал с малой нагрузкой, он должен быть предварительно нагрет до температуры верхних слоев масла 50-60 °С, что необходимо для снятия изоляционных характеристик. Нагрев трансформатора достигается за счет временного отключения вентиляторов дутья при работающих насосах циркуляции масла. При тепловизионном обследовании проверяются:

- равномерность распределения температуры по поверхности бака как со стороны обмотки ВН, так и НН;

- работоспособность охладителей, путем измерения температур на входе и выходе масла;

- фиксируются возможные очаги аномальных нагревов: на поддоне, в разъеме колокола, в местах установки адаптеров вводов, разъемов люков, маслонасосах, вентиляторов;

- сопоставляются значения температур верхних слоев масла, измеренных термосигнализатором и тепловизором;

- сопоставляются уровни масла в маслорасширителе с уровнем масла во вводах;

- по возможности проверяется распределение температуры вдоль маслопроводов, соединяющих бак трансформатора с маслорасширителем (наличие протока масла через газовое реле, отсечный клапан).

По выявленным тепловым аномалиям, проводится анализ возможных причин их вызывающих и намечается объем дополнительных проверок и измерений. Желательно всю информацию о результатах тепловизионного обследования и иных испытаниях, а также результаты осмотра, выявленные неисправности и эксплуатационные данные закладывать в компьютерный банк данных по каждому из исполнений трансформаторов.


4. Применение экспертных систем для обработки результатов диагностирования силовых трансформаторов

4.1 Основные понятия и определения

4.1.1 Назначения и основные свойства экспертных систем

В системах искусственного интеллекта и в экспертных системах, в частности, решаются, как правило, неформализованные задачи, то есть ЭС и системы ИИ не отвергают и не заменяют традиционного подхода к разработке программ, ориентированного на решение формализованных задач (например, проблем обработки данных, проектирования или научных расчетов). Просто вместо последовательного программирования с заранее создаваемыми программами (процедурное программирование) искусственный интеллект предполагает динамическое формирование программы из накопленных в памяти компьютера фактов, навыков и правил, которые машина применяет в конкретной ситуации.

ЭС используются для решения так называемых неформализованных задач, общим для которых является то, что:

1) задачи не могут быть заданы в числовой форме;

2) цели нельзя выразить в терминах точно определённой целевой функции;

3) не существует алгоритмического решения задачи;

4) если алгоритмическое решение есть, то его нельзя использовать из-за

ограниченности ресурсов (время, память).

Неформализованные задачи обычно обладают следующими характеристиками:

1) ошибочность, неоднозначность, неполнота и противоречивость исходных данных;

2) ошибочность, неоднозначность, неполнота и противоречивость знаний о проблемной области[1] и о решаемой задаче;

3) большая размерность пространства решения, то есть перебор при поиске решения весьма велик;

4) динамически изменяющиеся данные и знания.

Большой интерес к экспертным системам вызван, по крайней мере, тремя причинами:

1) они ориентированы на решение большого круга задач в неформализованных областях, то есть на приложения, которые до недавнего времени считались мало доступными для вычислительной техники;

2) экспертные системы предназначены для работы специалистов, не имеющих навыков программирования, что дает возможность резко расширить сферу использования вычислительной техники;

3) экспертные системы решают практические задачи, получая при этом результаты, сравнимые с результатами, которые получил бы человек-эксперт.

На рисунке 25 отражено положение, которое экспертные системы занимают среди систем искусственного интеллекта.

Программы искусственного интеллекта – демонстрируют интеллектуальное поведение умелым применением эвристик.

Системы, основанные на знаниях – делают знания предметной области явными и отделяют их от остальной части системы.

Экспертная система - это программное средство, использующее экспертные знания для обеспечения высокоэффективного решения неформализованных задач в узкой предметной области. Основу ЭС составляет база знаний (БЗ) о предметной области, которая накапливается в процессе построения и эксплуатации ЭС. Накопление и организация знаний - важнейшее свойство всех ЭС.



Рисунок 25 - Место экспертных систем в программах искусственного интеллекта

Рисунок 26 - Основные свойства ЭС

Знания являются явными и доступными, что отличает ЭС от традиционных программ, и определяет их основные свойства, такие, как:

1) Применение для решения проблем высококачественного опыта, который представляет уровень мышления наиболее квалифицированных экспертов в данной области, что ведёт к решениям творческим, точным и эффективным.

2) Наличие прогностических возможностей, при которых ЭС выдаёт ответы не только для конкретной ситуации, но и показывает, как изменяются эти ответы в новых ситуациях, с возможностью подробного объяснения каким образом новая ситуация привела к изменениям.

3) Обеспечение такого нового качества, как институциональная память, за счёт входящей в состав ЭС базы знаний, которая разработана в ходе взаимодействий со специалистами организации, и представляет собой текущую политику этой группы людей. Этот набор знаний становится сводом квалифицированных мнений и постоянно обновляемым справочником наилучших стратегий и методов, используемых персоналом. Ведущие специалисты уходят, но их опыт остаётся.

4) Возможность использования ЭС для обучения и тренировки руководящих работников, обеспечивая новых служащих обширным багажом опыта и стратегий, по которым можно изучать рекомендуемую политику и методы.

4.1.2 Архитектура экспертных систем

Экспертные системы - это специфичные программы, поскольку, как правило, используют механизм автоматического рассуждения (вывода) и так называемые слабые методы, такие, как поиск или эвристика. Они существенно отличаются от точных и хорошо аргументированных алгоритмов и не похожи на математические процедуры большинства традиционных разработок.

Основой любой ЭС является совокупность знаний, структурированная в целях упрощения процесса принятия решения. Для специалистов в области искусственного интеллекта термин знания означает информацию, которая необходима программе, чтобы она вела себя "интеллектуально". Эта информация принимает форму фактов и правил. Факты и правила в ЭС не всегда либо истинны, либо ложные. Иногда существует некоторая степень неуверенности в достоверности факта или точности правила. Если это сомнение выражено явно, то оно называется "коэффициентом доверия".