Смекни!
smekni.com

Современные методы диагностики тяговых трансформаторов железных дорог и построение экспертной системы для обработки результатов тепловизионной диагностики тяговых трансформаторов ВСЖД (стр. 11 из 25)

При оценке нагрева масла в трансформаторах следует считаться с возможностью застоя верхних слоев масла и его повышенных нагревов, если расстояние между крышкой бака и патрубками радиаторов или охладителей велико (больше 200-300 мм). Так, при исполнении крышки "гробиком" температура масла под верхней частью крышки может превышать температуру масла на уровне верхних патрубков охладителей примерно на 10 °С.

Приведённые выше параметры температур для отдельных конструкций трансформаторов характерны для установившегося режима работы. При проведении инфракрасной диагностики трансформаторов необходимо считаться с тем, что постоянная времени обмоток относительно масла различных исполнений трансформаторов находится в пределах четыре – семь минут, а постоянные времени всего трансформатора - в пределах 1,5 - 4,5 часов. Установившийся тепловой режим трансформатора по обмоткам наступает через 20 - 30 минут, а по маслу через 10 - 20 часов.

С учётом рассмотренных выше температурных режимов работы трансформаторов, ниже сделана попытка определить условия оценки их состояния при проведении инфракрасной диагностики.

2.5.1 Определение местоположения дефектов в магнитопроводах трансформаторов

Как известно, состояние магнитопровода трансформаторов весьма эффективно оценивается по результатам хроматографического анализа состава газов в масле. По составу и содержанию газов в масле определяется вид дефекта.

При наличии повреждения в магнитопроводе трансформатора, обусловленного перегревом, основными при анализе растворённых в масле газов являются этилен (С2Н4) или ацетилен (С2Н2) при нагреве масла. Характерные газы: водород (Н2), метан (СН4) и этан (С2Не).

Образование указанных газов в масле может быть обусловлено:

1) нарушением изоляции стяжных шпилек, ярмовых балок, амортизаторов, прессующих колец,

2) местными нагревами от магнитных полей рассеяния в ярмовых балках, бандажах, прессующих кольцах,

3) неправильным заземлением магнитопровода и другое.

Инфракрасное обследование трансформаторов, являясь вспомогательным средством контроля, позволяет при наличии газообразования в трансформаторе оценить зону образования дефекта в магнитопроводе, а при наличии заводской технологической документации сузить место поиска дефекта.

Для получения более полных данных о характере развития дефекта целесообразно проводить инфракрасный контроль при холостом ходе трансформатора и дополнительно при двух-трёх ступенях нагрузки.

2.5.2 Определение внутренних дефектов обмоток

Выявление внутренних дефектов в трансформаторах путем измерения температуры на поверхности их баков является весьма трудоемкой операцией, зависит от многих факторов (конструкция обмоток, нагрузка, способ охлаждения, внешние климатические факторы, состояние поверхности трансформатора и тому подобное) и позволяет выявлять неисправности лишь на поздних стадиях их развития. В принципе инфракрасное обследование трансформаторов позволяет выявлять локальные и общие перегревы, связанные со следующими факторами:

1) Конструктивные просчеты;

Существенное влияние на распределение температуры по поверхности бака трансформатора оказывают меры конструктивного характера, использованные заводом-изготовителем по выравниванию потерь в обмотках трансформаторов. Неравномерность распределения этих потерь по обмотке может являться одной из причин возникновения местных перегревов, вызывающих ускоренное старение изоляции отдельных катушек или витков обмоток, а также возникновения локальных нагревов на стенках бака трансформатора. Неправильный выбор места подсоединения охладителей к баку трансформатора или в оценке эффективности охлаждающих устройств, могут привести как к образованию "застойных зон", так и к перегревам отдельных катушек или фаз обмоток.

2) Перегревы контактных соединений отводов обмоток;

3) Образование "застойных зон" масла, вызванного разбуханием бумажной изоляции витков, шламообразованием и другими причинами.

2.5.3 Определение работоспособности устройств системы охлаждения трансформатора

Снятие термограмм устройств системы охлаждения трансформаторов (дутьевые вентиляторы, маслонасосы, фильтры, радиаторы трансформаторов с естественной циркуляцией масла и тому подобное) позволяет оценить их работоспособность и при необходимости принять оперативные меры по устранению неполадок.

2.5.3.1 Маслонасосы

Температура нагрева на поверхности корпуса маслонасоса и трубопроводов работающего трансформатора будет практически одинакова. При появлении неисправности в маслонасосе (трения крыльчаток, витковое замыкание в обмотке электродвигателя и тому подобное) температура на поверхности корпуса маслонасоса должна повысится и будет превышать температуру на поверхности маслопровода.

2.5.3.2 Дутьевые вентиляторы

Оценка теплового состояния электродвигателей вентиляторов осуществляется сопоставлением измеренных температур нагрева. Причинами повышения нагрева электродвигателей могут быть:

- неисправность подшипников качения;

- неправильно выбранный угол атаки крыльчатки вентилятора;

- витковое замыкание в обмотке электродвигателя и тому подобное.

2.5.3.3 Термосифонные фильтры

При инфракрасном контроле можно судить о работоспособности термосифонных фильтров трансформаторов. Как известно, термосифонный фильтр предназначен для непрерывной регенерации масла в процессе работы трансформатора. Движение масла через фильтр с адсорбентом происходит под действием тех же сил, которые обеспечивают движение масла через охлаждающие радиаторы, то есть разностей плотности горячего и холодного масла. Термосифонный фильтр подсоединен параллельно трубам радиатора системы охлаждения и поэтому у работающего фильтра температуры на входе и выходе, если трансформатор нагружен, должны отличаться между собой. В налаженном фильтре будет иметь место плавное повышение температуры по его высоте.

При использовании мелкозернистого силикигеля, шламообразования в фильтре, случайном закрытии задвижки на трубопроводе фильтра, при работе трансформатора в режиме холостого хода, циркуляция масла в фильтре будет незначительна или отсутствовать вообще. В этих случаях температура на входе и выходе фильтра будет практически одинакова.

2.5.3.4 Переключающие устройства

Переключающие устройства серии РНТ и им подобные, встраиваемые в трансформаторы, состоят из переключателя и реактора, расположенных в баке трансформатора, а также контактора. Контактор переключающего устройства размещается в отдельном кожухе, расположенном на стенке баке трансформатора и залитом маслом. Контроль состояния контактов переключателя, ввиду его глубинного расположения в баке трансформатора весьма проблематичен. При перегреве контактов контактора, ввиду небольшого объема, залитого в него масла, на стенках бака контактора будут иметь место локальные нагревы.

2.5.3.5 Радиаторы

Неисправность плоского крана радиатора или ошибочное его закрытие приведет к перекрытию протока масла через радиатор. В этом случае температура труб радиаторов будет существенно ниже, нежели у работающего радиатора. С течением времени, в эксплуатации, поверхности труб радиаторов подвергаются воздействию ржавчины, на них оседают продукты разложения масла и бумаги, что порой приводит к уменьшению сечения для протока масла или полного его прекращения. Трубы с подобными отклонениями будут "холоднее" остальных.

Примечание - Не работает крайний радиатор 1Т

Рисунок 14 - Термограмма и фотография силового трансформатора (ЭЧЭ-1)

2.5.3.6 Датчик температуры

Практически единственным критерием оценки эффективности работы системы охлаждения является температура верхних слоев масла трансформатора, измеряемая с помощью термометров, либо термометрическим сигнализатором с электроконтактным манометром, либо дистанционным термометром сопротивления, устанавливаемых в карманах (гильзах) крышки бака. Контроль температуры масла в этих случаях может быть связан с существенными погрешностями, которые обусловлены как инструментальной точностью измерения, местом размещения гильзы и другими факторами. Поэтому при термографическом обследовании трансформатора необходимо также сравнивать значения температур на крышке бака измеренные тепловизором с данными датчика температуры.

2.5.3.7 Поверхность бака трансформатора

Снятие температурных профилей бака трансформатора в горизонтальном и вертикальном направлениях и сопоставление их с конструктивными особенностями трансформатора (расположение обмоток, отводов, элементов охлаждения и тому подобное), пофазное сравнение полученных данных, в зависимости от длительности эксплуатации и режима работы, позволяет в ряде случаев получить дополнительную информацию о характере протекания тепловых процессов в баке трансформатора. При термографическом обследовании трансформатора необходимо оценивать как значения температур, так и их распределение по фазам.

2.5.3.8 Маслорасширители

Как известно, при изменении теплового состояния трансформатора происходит обмен масла между его объемами, находящимися в баке трансформатора и маслорасширителе. При стабилизации теплового состояния, теплообмен между этими объемами масла происходит в основном за счет теплопередачи. При осмотре с помощью тепловизора выхлопной трубы трансформатора виден уровень масла, находящейся в ней и характер изменения температуры по высоте трубы. При работе трансформатора с нагрузкой просматривается также и уровень масла в его маслорасширителе. Однако в отдельных случаях, в маслопроводе соединяющем крышку трансформатора с маслорасширителем может происходить резкое падении температуры на поверхности маслопровода непосредственно после газового реле или отсечного клапана. Причина такой аномалии должна быть изучена с учетом конструкции трансформатора, диаметра маслопровода, нагрузки и других факторов и может быть обусловлена дефектом плоского крана, расположенного у газового реле.