Пусть g — определитель матрицы gij. Вместо f в (2.5) введем новую функцию распределения
F{x,v,s) = F(x,v,s)/g.
Упражнение
Показать, что для новой функции распределения уравнение эволюции бездивергентно и имеет вид
Решение
Воспользуемся операцией дифференцирования определителя. При этом второе слагаемое в (2.5) преобразуется следующим образом:
В (a) используется тождество
Для новой функции распределения число частиц записывается в виде
Поэтому g dxdv есть инвариантная мера: F не растет, т.е. полная производная от неё есть ноль, и поскольку число частиц сохраняется, то мера g dxdv сохраняется тоже.
Вывод. В качестве переменных в функции распределения можно брать импульсы или скорости, а в качестве времени — время или интервал s. Для простоты уравнений брали интервал, который в теории относительности называется собственным временем[7]. Возможность выбрать s в качестве параметра означает синхронизацию собственного времени различных частиц. С этим связан парадокс близнецов. Тот из них, чей интервал (собственное время) меньше, т.е. который «двигался больше», оказывается младше. Поэтому использование s хотя формально и возможно, но делает затруднительным интерпретацию результатов.
2.3 Как ведет себя мера риманова пространства при преобразованиях
Пусть проведена замена координат хк = f (
Поэтому
Дифференцируя по параметру, имеем
Вывод. В качестве переменных функции распределения удобно брать импульсы. В качестве параметра
2.4 Вывод уравнения Власова-Максвелла
Система уравнений Власова-Максвелла описывает движение частиц в собственном электромагнитном поле. Стартуем с обычного действия для электромагнитного поля[8], действия Власова-Максвелла или Лоренца (по повторяющимся верхним и нижним индексам идет суммирование):
где Sр означает действие частиц (particles), Sf — действие полей (fields), Sp-f — действие частиц-полей (particles-fields).
Здесь а означает сорт частиц, отличаемый по массе mа и заряду еa, q нумерует частицы внутри сорта,
1. Варьирование Sp + Sp+f по координатам
где Lp, — лагранжиан частиц.
Здесь
Варьируем Sp-f (снова опускаем а):
Отсюда из условия
уравнение больцман власов динамический модельный
где
2. Уравнение для функции распределения получается как уравнение сдвига вдоль траекторий полученной динамической системы движения зарядов в поле. Видно, что удобно взять функцию распределения oт импульсов, а не от скоростей. При этом надо выразить скорости через импульсы:
Обозначая
Здесь
В это уравнение записано для ионов и электронов в следующем виде:
Здесь fi(t, р, х) — функция распределения ионов по пространству и импульсам в момент времени t (i в (4.3) — первая буква слова ion. а не индекс), fе(t, р, х) — функция распределения электронов, ze — заряд иона, (—е) — заряд электрона, [v, B] — векторное произведение. Не выписано выражение v через р, однако часто его берут классическим: vаj = pj/ma , и тогда удобно записать уравнения через функцию распределения f(t, v, х) по скоростям вместо импульса. В записи (4.3) v надо брать различными для электронов и ионов, т.е. (4.3) требует уточнения, где vi , а где vc вместо v, и каковы эти функции, как функции импульса vi(p) и vc(p).
3. Уравнение для полей. Используем функцию распределения вместо плотности. Сначала надо переписать Sp-f через функцию распределения, совершив переход
после чего Sp-f запишется в виде
Теперь варьируем по потенциалам Аu(х):
Полагаем
Система (4.2), (4.4) и есть система уравнений Власова-Максвелла.
Замечание 1. Уравнения (4.4) являются второй парой уравнений Максвелла, а первая следует из равенств
Замечание 2. При выводе уравнений Власова-Максвелла по схеме Боголюбова мы должны были бы стартовать с гамильтоновых систем с потенциалами Лиенарта-Вихерта (запаздывающие потенциалы). Для слабого релятивизма соответствующий лагранжиан называется лагранжианом Дарвина.